128 research outputs found
BlueFix : using crowd-sourced feedback to support programming students in error diagnosis and repair.
Feedback is regarded as one of the most important influences on student learning and motivation. But standard compiler feedback is designed for experts - not novice programming students, who can find it difficult to interpret and understand. In this paper we present BlueFix, an online tool currently integrated into the BlueJ IDE which is designed to assist programming students with error diagnosis and repair. Unlike existing approaches, BlueFix proposes a feedback algorithm based upon frameworks combined from the HCI and Pedagogical domains, which can provide different students with dynamic levels of support based upon their compilation behaviour. An evaluation revealed that students' viewed our tool positively and that our methodology could identify appropriate fixes for uncompilable source code with a significantly higher rate of speed and precision over related techniques in the literature
Early Results from the Wisconsin H-Alpha Mapper Southern Sky Survey
After a successful eleven-year campaign at Kitt Peak, we moved the Wisconsin
H-Alpha Mapper (WHAM) to Cerro Tololo in early 2009. Here we present some of
the early data after a few months under southern skies. These maps begin to
complete the first all-sky, kinematic survey of the diffuse H-alpha emission
from the Milky Way. Much of this emission arises from the Warm Ionized Medium
(WIM), a significant component of the ISM that extends a few kiloparsecs above
the Galactic disk. While this first look at the data focuses on the H-alpha
survey, WHAM is also capable of observing many other optical emission lines,
revealing fascinating trends in the temperature and ionization state of the
WIM. Our ongoing studies of the physical conditions of diffuse ionized gas will
continue from the southern hemisphere following the H-alpha survey. In
addition, future observations will cover the full velocity range of the
Magellanic Stream, Bridge, and Clouds to trace the ionized gas associated with
these neighboring systems.Comment: 4 pages, 2 figures. To appear in "The Dynamic ISM: A celebration of
the Canadian Galactic Plane Survey," ASP Conference Serie
Planar Silicon Metamaterial Lenslet Arrays for Millimeter-wavelength Imaging
Large imaging arrays of detectors at millimeter and submillimeter wavelengths
have applications that include measurements of the faint polarization signal in
the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are
developing planar lenslet arrays for millimeter-wavelength imaging using
metamaterials microlithically fabricated using silicon wafers. This
metamaterial technology has many potential advantages compared to conventional
hemispherical lenslet arrays, including high precision and homogeneity, planar
integrated anti-reflection layers, and a coefficient of thermal expansion
matched to the silicon detector wafer. Here we describe the design process for
a gradient-index (GRIN) metamaterial lenslet using metal-mesh patterned on
silicon and a combination of metal-mesh and etched-hole metamaterial
anti-reflection layers. We optimize the design using a bulk-material model to
rapidly simulate and iterate on the lenslet design. We fabricated prototype
GRIN metamaterial lenslet array and mounted it on a Polarbear/Simons Array
90/150~GHz band transition edge sensor (TES) bolometer detector array with
sinuous planar antennas. Beam measurements of a prototype lenslet array agree
reasonably well with the model simulations. We plan to further optimize the
design and combine it with a broadband anti-reflection coating to achieve
operation over 70--350~GHz bandwidth.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy X, December 13-18, 202
Solar Contamination in Extreme-precision Radial-velocity Measurements: Deleterious Effects and Prospects for Mitigation
Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10 cm s−1 sensitivity required for the detection and characterization of terrestrial exoplanets in or near habitable zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID (NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy) precision RV instrument for the WIYN 3.5 m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while "bright time" has been traditionally adequate for RV science, the goal of 10 cm s−1 precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments
Kinase Inhibitor Pulldown Assay (KiP) for Clinical Proteomics
Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169
Instrumentation for high-resolution spectropolarimetry
ABSTRACT Linear spectropolarimetry of spectral lines is a neglected field in astronomy, largely because of the lack of instrumentation. Techniques that have been applied, but rarely, include investigation of the dynamics of scattering envelopes through the polarization of electron-or dust-scattered nebular light. Untried techniques include promising new magnetic diagnostics like the Hanle Effect in the far-ultraviolet and magnetic realignment in the visible. The University of Wisconsin Space Astronomy Lab is developing instrumentation for such investigations. In the visible, the Prime Focus Imaging Spectrograph (PFIS) is a first light instrument for the Southern African Large Telescope (SALT), which at an aperture of 11m will be the largest single telescope in the Southern Hemisphere. Scheduled for commissioning in late 2004, PFIS is a versatile highthroughput imaging spectrograph using volume-phase holographic gratings for spectroscopic programs from 320nm to 900nm at resolutions of R=500 to R=6000. A dual-etalon Fabry-Perot subsystem enables imaging spectroscopy at R=500 and R=3000 or 12,500. The polarization subsystem, consisting of a very large calcite polarizing beam-splitter used in conjunction with half-and quarter-wave Pancharatnam superachromatic plates, allow linear or circular polarimetric measurements in any of the spectroscopic modes. In the FUV, the Far-Ultraviolet SpectroPolarimeter (FUSP) is a sounding rocket payload, scheduled for its first flight in 2003, that will obtain the first high-precision spectropolarimetry from 105 -150 nm, and the first astronomical polarimetry of any kind below 130 nm. The 50 cm primary mirror of the telescope is F/2.5. At the prime focus are the polarimetric optics, a stressed lithium fluoride rotating waveplate, followed by a synthetic diamond Brewsterangle mirror. The spectrometer uses an aberration-corrected spherical holographic grating and a UV-sensitized CCD detector, for a spectral resolution of R=1800
SMART Research: Toward Interdisciplinary River Science in Europe
Interdisciplinary science is rapidly advancing to address complex human-environment
interactions. River science aims to provide the methods and knowledge required to
sustainably manage some of the planet’s most important and vulnerable ecosystems;
and there is a clear need for river managers and scientists to be trained within an
interdisciplinary approach. However, despite the science community’s recognition of the
importance of interdisciplinary training, there are few studies examining interdisciplinary
graduate programs, especially in science and engineering. Here we assess and
reflect on the contribution of a 9-year European doctoral program in river science:
‘Science for MAnagement of Rivers and their Tidal Systems’ Erasmus Mundus Joint
Doctorate (SMART EMJD). The program trained a new generation of 36 early career
scientists under the supervision of 34 international experts from different disciplinary
and interdisciplinary research fields focusing on river systems, aiming to transcend
the boundaries between disciplines and between science and management. We
analyzed the three core facets of the SMART program, namely: (1) interdisciplinarity,
(2) internationalism, and (3) management-oriented science. We reviewed the contents
of doctoral theses and publications and synthesized the outcomes of two questionnaire
surveys conducted with doctoral candidates and supervisors. A high percentage of the
scientific outputs (80%) were interdisciplinary. There was evidence of active collaboration
between different teams of doctoral candidates and supervisors, in terms of joint
publications (5 papers out of the 69 analyzed) but this was understandably quite
limited given the other demands of the program. We found evidence to contradict
the perception that interdisciplinarity is a barrier to career success as employment
rates were high (97%) and achieved very soon after the defense, both in academia
(50%) and the private/public sector (50%) with a strong international dimension. Despite
management-oriented research being a limited (9%) portion of the ensemble of theses, employment in management was higher (22%). The SMART program also increased
the network of international collaborations for doctoral candidates and supervisors.
Reflections on doctoral training programs like SMART contribute to debates around
research training and the career opportunities of interdisciplinary scientists
The NEID Precision Radial Velocity Spectrometer: Port Adapter Overview, Requirements, and Test Plan
The NEID spectrometer is an optical (380-930 nm), fiber-fed, precision Doppler spectrometer currently in development for the WIYN 3.5 m telescope at Kitt Peak National Observatory as part of the NN-EXPLORE partnership. Designed to achieve a radial velocity precision of < 30 cm/s, NEID will be sensitive enough to detect terrestrial-mass exoplanets around low-mass stars. Light from the target stars is focused by the telescope to a bent Cassegrain port at the edge of the primary mirror mechanical support. The specialized NEID "Port Adapter" system is mounted at this bent Cassegrain port and is responsible for delivering the incident light from the telescope to the NEID fibers. In order to provide stable, high-quality images to the science instrument, the Port Adapter houses several sub-components designed to acquire the target stars, correct for atmospheric dispersion, stabilize the light onto the science fibers, and calibrate the spectrometer by injecting known wavelength sources such as a laser frequency comb. Here we provide an overview of the overall opto-mechanical design and system requirements of the Port Adapter. We also describe the development of system error budgets and testplans to meet those requirements
Development and characterization of the readout system for POLARBEAR-2
POLARBEAR-2 is a next-generation receiver for precision measurements of the
polarization of the cosmic microwave background (Cosmic Microwave Background
(CMB)). Scheduled to deploy in early 2015, it will observe alongside the
existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro
Toco in the Atacama desert of Chile. For increased sensitivity, it will feature
a larger area focal plane, with a total of 7,588 polarization sensitive
antenna-coupled Transition Edge Sensor (TES) bolometers, with a design
sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin,
and the bolometers will be read-out with 40x frequency domain multiplexing,
with 36 optical bolometers on a single SQUID amplifier, along with 2 dark
bolometers and 2 calibration resistors. To increase the multiplexing factor
from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth
for SQUID readout and well-defined frequency channel spacing. Extending to
these higher frequencies requires new components and design for the LC filters
which define channel spacing. The LC filters are cold resonant circuits with an
inductor and capacitor in series with each bolometer, and stray inductance in
the wiring and equivalent series resistance from the capacitors can affect
bolometer operation. We present results from characterizing these new readout
components. Integration of the readout system is being done first on a small
scale, to ensure that the readout system does not affect bolometer sensitivity
or stability, and to validate the overall system before expansion into the full
receiver. We present the status of readout integration, and the initial results
and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for
Astronomy VII. Published in Proceedings of SPIE Volume 915
Solar Contamination in Extreme-precision Radial-velocity Measurements: Deleterious Effects and Prospects for Mitigation
Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10 cm s−1 sensitivity required for the detection and characterization of terrestrial exoplanets in or near habitable zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID (NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy) precision RV instrument for the WIYN 3.5 m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while "bright time" has been traditionally adequate for RV science, the goal of 10 cm s−1 precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments
- …