627 research outputs found

    Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents

    Get PDF
    The results of an experimental investigation carried out to measure combined wave and current loads on horizontally submerged square and rectangular cylinders are reported in this paper. The wave and current induced forces on a section of the cylinders with breadth-depth (aspect) ratios equal to 1, 0.5, and 0.75 are measured in a wave tank. The maximum value of Keulegan-Carpenter (KC) number obtained in waves alone is about 5 and Reynolds (Re) number ranged from 6.3976103 to 1.186105. The drag (CD) and inertia (CM) coefficients for each cylinder are evaluated using measured sectional wave forces and particle kinematics calculated from linear wave theory. The values of CD and CM obtained for waves alone have already been reported (Venugopal, V., Varyani, K. S., and Barltrop, N. D. P. Wave force coefficients for horizontally submerged rectangular cylinders. Ocean Engineering, 2006, 33, 11-12, 1669-1704) and the coefficients derived in combined waves and currents are presented here. The results indicate that both drag and inertia coefficients are strongly affected by the presenceof the current and show different trends for different cylinders. The values of the vertical component inertia coefficients (CMY) in waves and currents are generally smaller than the inertia coefficients obtained in waves alone, irrespective of the current's magnitude and direction. The results also illustrate the effect of a cylinder's aspect ratio on force coefficients. This study will be useful in the design of offshore structures whose columns and caissons are rectangular sections

    Developing a self‐consistent description of Titan's upper atmosphere without hydrodynamic escape

    Full text link
    In this study, we develop a best fit description of Titan's upper atmosphere between 500 km and 1500 km, using a one‐dimensional (1‐D) version of the three‐dimensional (3‐D) Titan Global Ionosphere‐Thermosphere Model. For this modeling, we use constraints from several lower atmospheric Cassini‐Huygens investigations and validate our simulation results against in situ Cassini Ion‐Neutral Mass Spectrometer (INMS) measurements of N 2 , CH 4 , H 2 , 40 Ar, HCN, and the major stable isotopic ratios of 14 N/ 15 N in N 2 . We focus our investigation on aspects of Titan's upper atmosphere that determine the amount of atmospheric escape required to match the INMS measurements: the amount of turbulence, the inclusion of chemistry, and the effects of including a self‐consistent thermal balance. We systematically examine both hydrodynamic escape scenarios for methane and scenarios with significantly reduced atmospheric escape. Our results show that the optimum configuration of Titan's upper atmosphere is one with a methane homopause near 1000 km and atmospheric escape rates of 1.41–1.47 ×10 11 CH 4  m −2 s −1 and 1.08 ×10 14  H 2  m −2 s −1 (scaled relative to the surface). We also demonstrate that simulations consistent with hydrodynamic escape of methane systematically produce inferior fits to the multiple validation points presented here. Key Points The methane homopause is most likely near 1000 km altitude Hydrodynamic escape of methane is not required to match INMS Molecular hydrogen is best fit with a methane homopause of 1000 kmPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108005/1/jgra51076.pd

    Intracellular connections between basal bodies promote the coordinated behavior of motile cilia

    Get PDF
    Hydrodynamic flow produced by multiciliated cells is critical for fluid circulation and cell motility. Hundreds of cilia beat with metachronal synchrony for fluid flow. Cilia-driven fluid flow produces extracellular hydrodynamic forces that cause neighboring cilia to beat in a synchronized manner. However, hydrodynamic coupling between neighboring cilia is not the sole mechanism that drives cilia synchrony. Cilia are nucleated by basal bodies (BBs) that link to each other and to the cell\u27s cortex via BB-associated appendages. The intracellular BB and cortical network is hypothesized to synchronize ciliary beating by transmitting cilia coordination cues. The extent of intracellular ciliary connections and the nature of these stimuli remain unclear. Moreover, how BB connections influence the dynamics of individual cilia has not been established. We show by focused ion beam scanning electron microscopy imaging that cilia are coupled both longitudinally and laterally in the ciliat

    Primary cilia signaling mediates intraocular pressure sensation

    Get PDF
    Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems

    The changing association between socioeconomic circumstances and the incidence of colorectal cancer: a population-based study

    Get PDF
    Background:There is emerging evidence to suggest that the association between socioeconomic circumstances and colorectal cancer incidence has changed over recent decades.Methods:We conducted a descriptive population-based study to describe the relationship between socioeconomic circumstances and the incidence of colorectal cancer in a pre-screened population. Incident cases of colorectal cancer from the West of Scotland were identified from the Scottish Cancer Registry and European age-standardised incidence rates (EASR) were calculated. Socioeconomic circumstances were measured using the area-based Scottish Index of Multiple Deprivation (SIMD).Results:In total, 14?051 incident cases of colorectal cancer were recorded from 1999 to 2007. Incidence of colorectal cancer was associated with increased deprivation in men but not among women; an association that became evident from 2005 onwards. From 2005 to 2007, the deprivation gap in incidence among men was 13.3 per 100?000 (95% confidence interval 3.2-23.4), with rates 19.5% lower among the least deprived compared with the most deprived. This deprivation gap now accounts for an estimated 75 excess cases per year of male colorectal cancer in the West of Scotland.Conclusion:Deprivation was associated with higher incidence rates of male, but not female, colorectal cancer before the implementation of a national bowel screening programme

    Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission

    Get PDF
    The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development

    Effects of Saturn's magnetospheric dynamics on Titan's ionosphere

    Get PDF
    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn´s magnetosphere influences Titan´s ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan´s ionosphere, in the altitude range 1600-2400 km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03 h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600 km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan´s ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from 200 eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn´s nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan´s ionosphere against the dynamic pressure and energetic particle pressure in Saturn´s magnetosphere.Fil: Edberg, N. J. T.. University of Iowa; Estados Unidos. Swedish Institute of Space Physics; SueciaFil: Andrews, D. J.. Swedish Institute of Space Physics; SueciaFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gurnett, D. A.. University of Iowa; Estados UnidosFil: Holmberg, M. K. G.. Swedish Institute of Space Physics; SueciaFil: Jackman, C. M.. University Of Southampton; Reino UnidoFil: Kurth, W. S.. University of Iowa; Estados UnidosFil: Menietti, J. D.. University Of Iowa; Estados UnidosFil: Opgenoorth, H. J.. Swedish Institute of Space Physics; SueciaFil: Shebanits, O.. Swedish Institute of Space Physics; SueciaFil: Vigren, E.. Swedish Institute of Space Physics; SueciaFil: Wahlund, J. E.. Swedish Institute of Space Physics; Sueci

    The experience of living with chronic heart failure: a narrative review of qualitative studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic heart failure (CHF) is the leading cause of all hospitalisations and readmissions in older people, accounting for a large proportion of developed countries' national health care expenditure. CHF can severely affect people's quality of life by reducing their independence and ability to undertake certain activities of daily living, as well as affecting their psychosocial and economic capacity. This paper reports the findings of a systematic narrative review of qualitative studies concerning people's experience of living with CHF, aiming to develop a wide-ranging understanding of what is known about the patient experience.</p> <p>Methods</p> <p>We searched eight relevant electronic databases using the terms based on the diagnosis of 'chronic heart failure', 'heart failure' and 'congestive heart failure' and qualitative methods, with restrictions to the years 1990-May 2008. We also used snowballing, hand searching and the expert knowledge of the research team to ensure all relevant papers were included in the review. Of 65 papers collected less than half (n = 30) were found relevant for this review. These papers were subsequently summarised and entered into QSR NVivo7 for data management and analysis.</p> <p>Results</p> <p>The review has identified the most prominent impacts of CHF on a person's everyday life including social isolation, living in fear and losing a sense of control. It has also identified common strategies through which patients with CHF manage their illness such as sharing experiences and burdens with others and being flexible to changing circumstances.</p> <p>Finally, there are multiple factors that commonly impact on patients' self care and self-management in the disease trajectory including knowledge, understanding and health service encounters. These health service encounters encompass access, continuity and quality of care, co-morbid conditions, and personal relationships.</p> <p>Conclusions</p> <p>The core and sub-concepts identified within this study provide health professionals, service providers, policy makers and educators with broad insights into common elements of people's experiences of CHF and potential options for improving their health and wellbeing. Future studies should focus on building a comprehensive picture of CHF through examination of differences between genders, and differences within age groups, socioeconomic groups and cultural groups.</p
    corecore