495 research outputs found

    Perivascular adipose tissue-derived nitric oxide compensates endothelial dysfunction in aged pre-atherosclerotic apolipoprotein E-deficient rats

    Get PDF
    BACKGROUND AND AIMS: Atherosclerosis is a major contributor to global mortality and is accompanied by vascular inflammation and endothelial dysfunction. Perivascular adipose tissue (PVAT) is an established regulator of vascular function with emerging implications in atherosclerosis. We investigated the modulation of aortic relaxation by PVAT in aged rats with apolipoprotein E deficiency (ApoE-/-) fed a high-fat diet as a model of early atherosclerosis. METHODS AND RESULTS: ApoE-/- rats (N = 7) and wild-type Sprague-Dawley controls (ApoE+/+, N = 8) received high-fat diet for 51 weeks. Hyperlipidemia was confirmed in ApoE-/- rats by elevated plasma cholesterol (p < 0.001) and triglyceride (p = 0.025) levels. Early atherosclerosis was supported by increased intima/media thickness ratio (p < 0.01) and ED1-positive macrophage influx in ApoE-/- aortic intima (p < 0.001). Inflammation in ApoE-/- PVAT was characteristic by an increased [18F]FDG uptake (p < 0.01), ED1-positive macrophage influx (p = 0.0003), mRNA expression levels of CD68 (p < 0.001) and IL-1β (p < 0.01), and upregulated iNOS protein (p = 0.011). The mRNAs of MCP-1, IL-6 and adiponectin remained unchanged in PVAT. Aortic PVAT volume measured with micro-PET/CT was increased in ApoE-/- rats (p < 0.01). Maximal endothelium-dependent relaxation (EDR) to acetylcholine in ApoE-/- aortic rings without PVAT was severely impaired (p = 0.012) compared with controls, while ApoE-/- aortic rings with PVAT showed higher EDR than controls. All EDR responses were blocked by L-NMMA and the expression of eNOS mRNA was increased in ApoE-/- PVAT (p = 0.035). CONCLUSION: Using a rat ApoE-/- model of early atherosclerosis, we capture a novel mechanism by which inflammatory PVAT compensates severe endothelial dysfunction by contributing NO upon cholinergic stimulation

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Sensitivity and performance of the Advanced LIGO detectors in the third observing run

    Get PDF
    On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of an in-vacuum optical parametric oscillator for squeezed-light injection, replacement of core optics and end reaction masses, and installation of acoustic mode dampers. This paper explores the purposes behind these upgrades, and explains to the best of our knowledge the noise currently limiting the sensitivity of each detector

    Generation, High-Throughput Screening, and Biobanking of Human-Induced Pluripotent Stem Cell-Derived Cardiac Spheroids

    Get PDF
    Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are of paramount importance for human cardiac disease modeling and therapeutics. We recently published a cost-effective strategy for the massive expansion of hiPSC-CMs in two dimensions (2D). Two major limitations are cell immaturity and a lack of three-dimensional (3D) arrangement and scalability in high-throughput screening (HTS) platforms. To overcome these limitations, the expanded cardiomyocytes form an ideal cell source for the generation of 3D cardiac cell culture and tissue engineering techniques. The latter holds great potential in the cardiovascular field, providing more advanced and physiologically relevant HTS. Here, we describe an HTS-compatible workflow with easy scalability for the generation, maintenance, and optical analysis of cardiac spheroids (CSs) in a 96-well-format. These small CSs are essential to fill the gap present in current in vitro disease models and/or generation for 3D tissue engineering platforms. The CSs present a highly structured morphology, size, and cellular composition. Furthermore, hiPSC-CMs cultured as CSs display increased maturation and several functional features of the human heart, such as spontaneous calcium handling and contractile activity. By automatization of the complete workflow, from the generation of CSs to functional analysis, we increase intra- and inter-batch reproducibility as demonstrated by high-throughput (HT) imaging and calcium handling analysis. The described protocol allows modeling of cardiac diseases and assessing drug/therapeutic effects at the single-cell level within a complex 3D cell environment in a fully automated HTS workflow. In addition, the study describes a straightforward procedure for long-term preservation and biobanking of whole-spheroids, thereby providing researchers the opportunity to create next-generation functional tissue storage. HTS combined with long-term storage will substantially contribute to translational research in a wide range of areas, including drug discovery and testing, regenerative medicine, and the development of personalized therapies

    The Smallest Known Genomes of Multicellular and Toxic Cyanobacteria: Comparison, Minimal Gene Sets for Linked Traits and the Evolutionary Implications

    Get PDF
    Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N2) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N2 fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N2 fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits

    Point absorbers in Advanced LIGO

    Get PDF
    Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises

    Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Get PDF
    Background: Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc) sp. strain PCC 7120 (hereafter Anabaena) is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results: Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions) and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs), and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions: Directional RNA-seq data were obtained that provide comprehensive mapping of transcript boundaries and abundance for all transcribed RNAs in Anabaena filaments during the response to nitrogen deprivation. We have identified genes and noncoding RNAs that are transcriptionally regulated during heterocyst development. These data provide detailed information on the Anabaena transcriptome as filaments undergo heterocyst development and begin nitrogen fixation

    Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1)

    Approaching the motional ground state of a 10 kg object

    Get PDF
    The motion of a mechanical object -- even a human-sized object -- should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult: the thermal environment masks any quantum signature of the object's motion. Indeed, the thermal environment also masks effects of proposed modifications of quantum mechanics at large mass scales. We prepare the center-of-mass motion of a 10 kg mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nK, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback -- and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. This begets the possibility of probing gravity on massive quantum systems.Comment: published version containing minor change
    corecore