106 research outputs found

    Probing the field-induced variation of the chemical potential in Bi(2)Sr(2)CaCu(2)O(y) via the magneto-thermopower measurements

    Full text link
    Approximating the shape of the measured in Bi2Sr2CaCu2OyBi_2Sr_2CaCu_2O_y magneto-thermopower (TEP) ΔS(T,H)\Delta S(T,H) by asymmetric linear triangle of the form ΔS(T,H)Sp(H)±B±(H)(TcT)\Delta S(T,H)\simeq S_p(H)\pm B^{\pm}(H)(T_c-T) with positive B(H)B ^{-}(H) and B+(H)B ^{+}(H) defined below and above TcT_c, we observe that B+(H)2B(H)B ^{+}(H)\simeq 2B ^{-}(H). In order to account for this asymmetry, we explicitly introduce the field-dependent chemical potential of holes μ(H)\mu (H) into the Ginzburg-Landau theory and calculate both an average ΔSav(T,H)\Delta S_{av}(T,H) and fluctuation ΔSfl(T,H)\Delta S_{fl}(T,H) contributions to the total magneto-TEP ΔS(T,H)\Delta S(T,H). As a result, we find a rather simple relationship between the field-induced variation of the chemical potential in this material and the above-mentioned magneto-TEP data around TcT_c, viz. Δμ(H)Sp(H)\Delta \mu (H)\propto S_p(H).Comment: REVTEX (epsf), 4 pages, 2 PS figures; to be published in JET

    Estimation of the charge carrier localization length from Gaussian fluctuations in the magneto-thermopower of La_{0.6}Y_{0.1}Ca_{0.3}MnO_3

    Full text link
    The magneto-thermoelectric power (TEP) ΔS(T,H)\Delta S(T,H) of perovskite type manganise oxide La0.6Y0.1Ca0.3MnO3La_{0.6}Y_{0.1}Ca_{0.3}MnO_3 is found to exhibit a sharp peak at some temperature T=170KT^{*}=170K. By approximating the true shape of the measured magneto-TEP in the vicinity of TT^{*} by a linear triangle of the form ΔS(T,H)Sp(H)±B±(H)(TT)\Delta S(T,H)\simeq S_p(H)\pm B^{\pm}(H)(T^{*}-T), we observe that B(H)2B+(H)B ^{-}(H)\simeq 2B ^{+}(H). We adopt the electron localization scenario and introduce a Ginzburg-Landau (GL) type theory which incorporates the two concurrent phase transitions, viz., the paramagnetic-ferromagnetic transition at the Curie point TCT_C and the "metal-insulator" (M-I) transition at TMIT_{MI}. The latter is characterized by the divergence of the field-dependent charge carrier localization length ξ(T,H)\xi (T,H) at some characteristic field H0H_0. Calculating the average and fluctuation contributions to the total magnetization and the transport entropy related magneto-TEP ΔS(T,H)\Delta S(T,H) within the GL theory, we obtain a simple relationship between TT^{*} and the above two critical temperatures (TCT_{C} and TMIT_{MI}). The observed slope ratio B(H)/B+(H)B ^{-}(H)/B ^{+}(H) is found to be governed by the competition between the electron-spin exchange JSJS and the induced magnetic energy MsH0M_sH_0. The comparison of our data with the model predictions produce TC=195KT_{C}=195K, JS=40meVJS=40meV, M0=0.4MsM_0=0.4M_s, ξ0=10A˚\xi_0=10\AA, and ne/ni=2/3n_e/n_i=2/3 for the estimates of the Curie temperature, the exchange coupling constant, the critical magnetization, the localization length, and the free-to-localized carrier number density ratio, respectively.Comment: 6 pages (REVTEX), 2 PS figures (epsf.sty); submitted to Phys.Rev.

    High-frequency homogenization for periodic media

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2010 The Royal Society.An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.NSERC (Canada) and the EPSRC

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure

    Application of Non‐Precious Bifunctional Catalysts for Metal‐Air Batteries

    Get PDF
    Zinc‐air batteries have several advantages in comparison with the lithium‐ion technology as they enable the use of earth‐abundant elements, work at low cost, are lightweight, and are also much safer in application. In addition to the chemistry related to the zinc electrode, efficient and stable bifunctional catalysts are required for oxygen reduction reaction (ORR, for discharging) and oxygen evolution reaction (OER, for charging) on the air‐electrode side. Herein, a family of non‐precious metal catalysts is investigated as possible bifunctional composite: metal–nitrogen–carbon (MNC) catalysts for ORR, and metal oxyhydroxides as OER catalysts (Ox). The effect of transition metal and metal loading in these composite MNC + Ox catalysts on ORR and OER activities in half‐cell measurements is discussed. The catalysts were characterized using X‐ray diffraction and Raman spectroscopy to identify their phase composition. For the most active material, a potential gap of 0.79 V between OER and ORR was obtained, respectively. In a zinc‐air cell, this catalyst moreover showed a peak power density of 62 mW cm⁻² and a charge–discharge gap of 0.94 V after 26 h of charge–discharge cycling

    Final COMPASS Results on the Transverse-Spin-Dependent Azimuthal Asymmetries in the Pion-Induced Drell-Yan Process

    Get PDF
    The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV=c π− beam impinging on a transversely polarized ammonia target. Combining the data f both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function

    Spin Density Matrix Elements in Exclusive ρ0\rho ^0 Meson Muoproduction

    Full text link
    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive ρ0\rho ^0 meson muoproduction at COMPASS using 160~GeV/cc polarised μ+ \mu ^{+} and μ \mu ^{-} beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0~GeV/c2c^2 <W<< W < 17.0~GeV/c2c^2, 1.0 (GeV/cc)2^2 <Q2<< Q^2 < 10.0 (GeV/cc)2^2 and 0.01 (GeV/cc)2^2 <pT2<< p_{\rm{T}}^2 < 0.5 (GeV/cc)2^2. Here, WW denotes the mass of the final hadronic system, Q2Q^2 the virtuality of the exchanged photon, and pTp_{\rm{T}} the transverse momentum of the ρ0\rho ^0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons (γTVL\gamma^*_T \to V^{ }_L) indicate a violation of ss-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive ρ0\rho ^0 production

    Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of ρ0\rho^0 mesons

    Get PDF
    The production of vector mesons in deep inelastic scattering is an interesting yet scarsely explored channel to study the transverse spin structure of the nucleon and the related phenomena. The COMPASS collaboration has performed the first measurement of the Collins and Sivers asymmetries for inclusively produced ρ0\rho^0 mesons. The analysis is based on the data set collected in deep inelastic scattering in 20102010 using a 160GeV/c160\,\,\rm{GeV}/c μ+\mu^+ beam impinging on a transversely polarized NH3\rm{NH}_3 target. The ρ0\rho^{0} mesons are selected from oppositely charged hadron pairs, and the asymmetries are extracted as a function of the Bjorken-xx variable, the transverse momentum of the pair and the fraction of the energy zz carried by the pair. Indications for positive Collins and Sivers asymmetries are observed

    High-Statistics Measurement of Collins and Sivers Asymmetries for Transversely Polarized Deuterons

    Get PDF
    : New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized ^{6}LiD target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge in the measured x range are extracted. In particular, the accuracy of the d quark results is significantly improved

    High-statistics measurement of Collins and Sivers asymmetries for transversely polarised deuterons

    Full text link
    New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarised 6^6LiD target. The data were taken in 2022 with the COMPASS spectrometer using the 160 \gevv\ muon beam at CERN, balancing the existing data on transversely polarised proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the uu and dd quark, as well as the tensor charge in the measured xx-range are extracted. In particular, the accuracy of the dd quark results is significantly improved
    corecore