119 research outputs found

    Let the Judge Speak: Reconsidering the Role of Rehabilitation in Federal Sentencing

    Get PDF
    (Excerpt) This Note contends that the importance of rehabilitation as a valid and necessary principle of punishment is overlooked in § 3582(a) of the SRA and further argues that a judge should be permitted to consider rehabilitation when deciding to sentence a defendant to a term of imprisonment, so long as rehabilitation is not a dominant factor in coming to that decision. Part I outlines the principles of punishment and the rise and decline of the rehabilitative system of punishment in the United States. It also discusses the importance of rehabilitation and how society could benefit from a system that does not leave rehabilitation by the wayside. Part II discusses the Supreme Court’s ruling in Tapia v. United States and the resulting circuit split concerning the degree to which rehabilitation can be considered when sentencing a criminal defendant to a term of imprisonment in accordance with § 3553(a)(2)(D) and § 3582(a) of the SRA. Finally, Part III recommends that the Supreme Court resolve the circuit split by adopting the Fifth Circuit’s additional justification and dominant factor tests, or alternatively, that Congress amend § 3582(a) so as to permit judges to consider and talk about potential rehabilitation, without fear of being overruled for such discussions, when sentencing a defendant to prison

    Let the Judge Speak: Reconsidering the Role of Rehabilitation in Federal Sentencing

    Get PDF
    (Excerpt) This Note contends that the importance of rehabilitation as a valid and necessary principle of punishment is overlooked in § 3582(a) of the SRA and further argues that a judge should be permitted to consider rehabilitation when deciding to sentence a defendant to a term of imprisonment, so long as rehabilitation is not a dominant factor in coming to that decision. Part I outlines the principles of punishment and the rise and decline of the rehabilitative system of punishment in the United States. It also discusses the importance of rehabilitation and how society could benefit from a system that does not leave rehabilitation by the wayside. Part II discusses the Supreme Court’s ruling in Tapia v. United States and the resulting circuit split concerning the degree to which rehabilitation can be considered when sentencing a criminal defendant to a term of imprisonment in accordance with § 3553(a)(2)(D) and § 3582(a) of the SRA. Finally, Part III recommends that the Supreme Court resolve the circuit split by adopting the Fifth Circuit’s additional justification and dominant factor tests, or alternatively, that Congress amend § 3582(a) so as to permit judges to consider and talk about potential rehabilitation, without fear of being overruled for such discussions, when sentencing a defendant to prison

    Toll-like Receptor-4 Regulation of Hepatic Cyp3a11 Metabolism in a Mouse Model of LPS-induced CNS Inflammation

    Get PDF
    Central nervous system (CNS) infection and inflammation severely reduce the capacity of cytochrome P-450 metabolism in the liver. We developed a mouse model to examine the effects of CNS inflammation on hepatic cytochrome P-450 metabolism. FVB, C57BL/6, and C3H/HeouJ mice were given Escherichia coli LPS (2.5 μg) by intracerebroventricular (ICV) injection. The CNS inflammatory response was confirmed by the elevation of TNF-α and/or IL-1β proteins in the brain. In all mouse strains, LPS produced a 60–70% loss in hepatic Cyp3a11 expression and activity compared with saline-injected controls. Adrenalectomy did not prevent the loss in Cyp3a11 expression or activity, thereby precluding the involvement of the hypothalamic-adrenal-pituitary axis. Endotoxin was detectable (1–10 ng/ml) in serum between 15 and 120 min after ICV dosing of 2.5 μg LPS. Peripheral administration of 2.5 μg LPS by intraperitoneal injection produced similar serum endotoxin levels and a similar loss (60%) in Cyp3a11 expression and activity in the liver. The loss of Cyp3a11 in response to centrally or peripherally administered LPS could not be evoked in Toll-like receptor-4 (TLR4)-mutant (C3H/ HeJ) mice, indicating that TLR4 signaling pathways are directly involved in the enzyme loss. In summary, we conclude that LPS is transferred from the brain to the circulation in significant quantities in a model of CNS infection or inflammation. Subsequently, LPS that has reached the circulation stimulates a TLR4-dependent mechanism in the periphery, evoking a reduction in Cyp3a11 expression and metabolism in the liver

    An Improved Upper Bound for the Ring Loading Problem

    Full text link
    The Ring Loading Problem emerged in the 1990s to model an important special case of telecommunication networks (SONET rings) which gained attention from practitioners and theorists alike. Given an undirected cycle on nn nodes together with non-negative demands between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the maximum cumulated demand on any edge is minimized. Let LL be the value of such a solution. In the relaxed version of the problem, each demand can be split into two parts where the first part is routed clockwise while the second part is routed counter-clockwise. Denote with LL^* the maximum load of a minimum split routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that LL+1.5DL \leq L^* + 1.5D, where DD is the maximum demand value. They also found (implicitly) an instance of the Ring Loading Problem with L=L+1.01DL = L^* + 1.01D. Recently, Skutella [Sku16] improved these bounds by showing that LL+1914DL \leq L^* + \frac{19}{14}D, and there exists an instance with L=L+1.1DL = L^* + 1.1D. We contribute to this line of research by showing that LL+1.3DL \leq L^* + 1.3D. We also take a first step towards lower and upper bounds for small instances

    Targeting the spliceosome through RBM39 degradation results in exceptional responses in high-risk neuroblastoma models

    Get PDF
    Aberrant alternative pre-mRNA splicing plays a critical role in MYC-driven cancers and therefore may represent a therapeutic vulnerability. Here, we show that neuroblastoma, a MYC-driven cancer characterized by splicing dysregulation and spliceosomal dependency, requires the splicing factor RBM39 for survival. Indisulam, a "molecular glue"that selectively recruits RBM39 to the CRL4-DCAF15 E3 ubiquitin ligase for proteasomal degradation, is highly efficacious against neuroblastoma, leading to significant responses in multiple high-risk disease models, without overt toxicity. Genetic depletion or indisulam-mediated degradation of RBM39 induces significant genome-wide splicing anomalies and cell death. Mechanistically, the dependency on RBM39 and high-level expression of DCAF15 determine the exquisite sensitivity of neuroblastoma to indisulam. Our data indicate that targeting the dysregulated spliceosome by precisely inhibiting RBM39, a vulnerability in neuroblastoma, is a valid therapeutic strategy

    A Facile Palladium Catalysed 3-Component Cascade Route to Functionalised Isoquinolinones and Isoquinolines

    Get PDF
    Palladium catalysed three component cascade process, involving coupling of 2-iodobenzoates, -benzaldehydes, or acetophenones with substituted allenes and ammonium tartrate as an ammonium surrogate, provides a novel and facile route to substituted functionalised isoquinolinones and isoquinolines in good yields

    The Chemerin/ChemR23 System Does Not Affect the Pro-Inflammatory Response of Mouse and Human Macrophages Ex Vivo

    Get PDF
    Macrophages constitute a major component of innate immunity and play an essential role in defense mechanisms against external aggressions and in inflammatory responses. Chemerin, a chemoattractant protein, is generated in inflammatory conditions, and recruits cells expressing the G protein-coupled receptor ChemR23, including macrophages. Chemerin was initially expected to behave as a pro-inflammatory agent. However, recent data described more complex activities that are either pro- or anti-inflammatory, according to the disease model investigated. In the present study, peritoneal macrophages were generated from WT or ChemR23−/− mice, stimulated with lipopolyssaccharide in combination or not with IFN-γ and the production of pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL-10) cytokines was evaluated using qRT-PCR and ELISA. Human macrophages generated from peripheral blood monocytes were also tested in parallel. Peritoneal macrophages from WT mice, recruited by thioglycolate or polyacrylamide beads, functionally expressed ChemR23, as assessed by flow cytometry, binding and chemotaxis assays. However, chemerin had no effect on the strong upregulation of cytokine release by these cells upon stimulation by LPS or LPS/IFN-γ, whatever the concentration tested. Similar data were obtained with human macrophages. In conclusion, our results rule out the direct anti-inflammatory effect of chemerin on macrophages ex vivo, described previously in the literature, despite the expression of a functional ChemR23 receptor in these cells

    Role of Soluble Epoxide Hydrolase in Postischemic Recovery of Heart Contractile Function

    Get PDF
    Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (Ephx2, sEH). To examine the functional role of sEH in the heart, mice with targeted disruption of the Ephx2 gene were studied. Hearts from sEH null mice have undetectable levels of sEH mRNA and protein and cannot convert EETs to DHETs. sEH null mice have normal heart anatomy and basal contractile function, but have higher fatty acid epoxide:diol ratios in plasma and cardiomyocyte cell culture media compared with wild type (WT). sEH null hearts have improved recovery of left ventricular developed pressure (LVDP) and less infarction compared with WT hearts after 20 minutes ischemia. Perfusion with the putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 to 100 nmol/L) before ischemia abolishes this cardioprotective phenotype. Inhibitor studies demonstrate that perfusion with phosphatidylinositol-3 kinase (PI3K) inhibitors wortmannin (200 nmol/L) or LY294002 (5 μmol/L), the ATP-sensitive K+ channel (KATP) inhibitor glibenclamide (1 μmol/L), the mitochondrial KATP (mitoKATP) inhibitor 5-hydroxydecanoate (100 to 200 μmol/L), or the Ca2+-sensitive K+ channel (KCa) inhibitor paxilline (10 μmol/L) abolishes the cardioprotection in sEH null hearts. Consistent with increased activation of the PI3K cascade, sEH null mice exhibit increased cardiac expression of glycogen synthase kinase-3β (GSK-3β) phospho-protein after ischemia. Together, these data suggest that targeted disruption of sEH increases the availability of cardioprotective EETs that work by activating PI3K signaling pathways and K+ channels

    Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes

    Get PDF
    Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response–related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10−4). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS–related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10−4); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10−4) and BMI–adjusted waist-to-hip ratio (P = 2.4×10−4). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore