285 research outputs found

    The Diffusion of Humans and Cultures in the Course of the Spread of Farming

    Full text link
    The most profound change in the relationship between humans and their environment was the introduction of agriculture and pastoralism. [....] For an understanding of the expansion process, it appears appropriate to apply a diffusive model. Broadly, these numerical modeling approaches can be catego- rized in correlative, continuous and discrete. Common to all approaches is the comparison to collections of radiocarbon data that show the apparent wave of advance of the transition to farming. However, these data sets differ in entry density and data quality. Often they disregard local and regional specifics and research gaps, or dating uncertainties. Thus, most of these data bases may only be used on a very general, broad scale. One of the pitfalls of using irregularly spaced or irregularly documented radiocarbon data becomes evident from the map generated by Fort (this volume, Chapter 16): while the general east-west and south-north trends become evident, some areas appear as having undergone anomalously early transitions to farming. This may be due to faulty entries into the data base or regional problems with radiocarbon dating, if not unnoticed or undocumented laboratory mistakes.Comment: 20 pages, 5 figures, submitted to Diffusive Spreading in Nature, Technology and Society, edited by Armin Bunde, J\"urgen Caro, J\"org K\"arger, Gero Vogl, Chapter 1

    Wolfgang Schott (1905–1989): the founder of quantitative paleoceanography

    Get PDF
    Wolfgang Schott is the pioneer in paleoceanography and has established this research field within marine geology. His papers from the first half of the twentieth century are all published in German; therefore, the most inspiring results are given here as original quotes in English, since they paved the ground for all scientific discussions on climate stratigraphy, past ocean currents, and glacial interglacial cycles

    Late Holocene climate: Natural or anthropogenic?

    Get PDF
    For more than a decade, scientists have argued about the warmth of the current interglaciation. Was the warmth of the preindustrial late Holocene natural in origin, the result of orbital changes that had not yet driven the system into a new glacial state? Or was it in considerable degree the result of humans intervening in the climate system through greenhouse gas emissions from early agriculture? Here we summarize new evidence that moves this debate forward by testing both hypotheses. By comparing late Holocene responses to those that occurred during previous interglaciations (in section 2), we assess whether the late Holocene responses look different (and thus anthropogenic) or similar (and thus natural). This comparison reveals anomalous (anthropogenic) signals. In section 3, we review paleoecological and archaeological syntheses that provide ground truth evidence on early anthropogenic releases of greenhouse gases. The available data document large early anthropogenic emissions consistent with the anthropogenic ice core anomalies, but more information is needed to constrain their size. A final section compares natural and anthropogenic interpretations of the δ13C trend in ice core CO2

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    Architecture of North Atlantic contourite drifts modified by transient circulation of the Icelandic mantle plume

    Get PDF
    Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulationThis work is partly supported by Natural Environment Research Council Grant NE/G007632/1. RPT was supported by the University of Cambridge Girdler Fund and by BP Exploration.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015GC00594

    Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2008, doi:10.1029/2003PA000921.Geochemical profiles from the North Atlantic Ocean suggest that the vertical δ13C structure of the water column at intermediate depths did not change significantly between glacial and interglacial time over much of the Pleistocene, despite large changes in ice volume and iceberg delivery from nearby landmasses. The most anomalous δ13C profiles are from the extreme interglaciations of the late Pleistocene. This compilation of data suggests that, unlike today (an extreme interglaciation), the two primary sources of northern deep water, Norwegian-Greenland Sea and Labrador Sea/subpolar North Atlantic, had different characteristic δ13C values over most of the Pleistocene. We speculate that the current open sea ice conditions in the Norwegian-Greenland Sea are a relatively rare occurrence and that the high-δ13C deep water that forms in this region today is geologically unusual. If northern source deep waters can have highly variable δ13C, then this likelihood must be considered when inferring past circulation changes from benthic δ13C records.National Science Foundation grants OCE-0118005 and OCE-0118001, which supported MER and DWO
    corecore