802 research outputs found

    Gravitational Cherenkov Radiation from Extended Theories of Gravity

    Full text link
    We linearize the field equations for higher order theories of gravity that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. The rate at which such particles would emit gravitational Cherenkov radiation is calculated for some interesting physical cases.Comment: 6 pages, to appear in Mod. Phys. Lett. A. arXiv admin note: text overlap with arXiv:0911.3094, arXiv:1105.619

    Relativistic orbits and Gravitational Waves from gravitomagnetic corrections

    Full text link
    Corrections to the relativistic theory of orbits are discussed considering higher order approximations induced by gravitomagnetic effects. Beside the standard periastron effect of General Relativity (GR), a new nutation effect was found due to the c−3{\displaystyle c^{-3}} orbital correction. According to the presence of that new nutation effect we studied the gravitational waveforms emitted through the capture in a gravitational field of a massive black hole (MBH) of a compact object (neutron star (NS) or BH) via the quadrupole approximation. We made a numerical study to obtain the emitted gravitational wave (GW) amplitudes. We conclude that the effects we studied could be of interest for the future space laser interferometric GW antenna LISA.Comment: 6 pages, 10 figures; Multifrequency Behaviour of High-Energy Cosmic Sources, Vulcano Workshop 200

    Jeans analysis of self-gravitating systems in f(R)-gravity

    Full text link
    Dynamics and collapse of collisionless self-gravitating systems is described by the coupled collisionless Boltzmann and Poisson equations derived from f(R)f(R)-gravity in the weak field approximation. Specifically, we describe a system at equilibrium by a time-independent distribution function f0(x,v)f_0(x,v) and two potentials Φ0(x)\Phi_0(x) and Ψ0(x)\Psi_0(x) solutions of the modified Poisson and collisionless Boltzmann equations. Considering a small perturbation from the equilibrium and linearizing the field equations, it can be obtained a dispersion relation. A dispersion equation is achieved for neutral dust-particle systems where a generalized Jeans wave-number is obtained. This analysis gives rise to unstable modes not present in the standard Jeans analysis (derived assuming Newtonian gravity as weak filed limit of f(R)=Rf(R)=R). In this perspective, we discuss several self-gravitating astrophysical systems whose dynamics could be fully addressed in the framework of f(R)f(R)-gravity.Comment: 8 pages, 2 figures, Accepted for publication in PR

    Structural and optoelectronical characterization of Si-SiO_2/SiO_2 multilayers with applications in all Si tandem solar cells

    Get PDF
    SiO_2 multilayers with embedded Si nanocrystals (Si-ncs) were investigated as an approach for developing highly efficient all Si tandem solar cells. The nanostructured samples, fabricated by means of a reactive magnetron sputtering, were structurally and optoelectronically characterized using different techniques. High resolution transmission electron microscopy (TEM) and energy filtered images in TEM show a high density of Si-nc with uniform sizes below 4 nm, while electrical characterization indicates high resistance values (10^2 kΩ) of these samples. In order to develop a better understanding of the optoelectronical behavior, photocurrent I-V curves were measured, obtaining variations under "dark" or "illumination" conditions. Recombination lifetimes in the order of tenths of nanoseconds were estimated by applying the transverse pump/probe technique

    Axially symmetric solutions in f(R)-gravity

    Full text link
    Axially symmetric solutions for f (R)-gravity can be derived starting from exact spherically sym- metric solutions achieved by Noether symmetries. The method takes advantage of a complex coordi- nate transformation previously developed by Newman and Janis in General Relativity. An example is worked out to show the general validity of the approach. The physical properties of the solution are also considered.Comment: 13 pages, 1 figure, to appear in Classical and Quantum Gravity 201

    Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity

    Full text link
    Alternative theories of gravity predict the presence of massive scalar, vector, and tensor gravitational wave modes in addition to the standard massless spin~2 graviton of general relativity. The deflection and frequency shift effects on light from distant sources propagating through a stochastic background of gravitational waves, containing such modes, differ from their counterparts in general relativity. Such effects are considered as a possible signature for alternative gravity in attempts to detect deviations from Einstein's gravity by astrophysical means.Comment: 9 pages, 1 figur

    Rapid prototyping for biomedical engineering: current capabilities and Challenges

    Get PDF
    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends

    f(R)f(R) gravity constrained by PPN parameters and stochastic background of gravitational waves

    Full text link
    We analyze seven different viable f(R)f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. The aim is to achieve experimental bounds for the theory at local and cosmological scales in order to select models capable of addressing the accelerating cosmological expansion without cosmological constant but evading the weak field constraints. Beside large scale structure and galactic dynamics, these bounds can be considered complimentary in order to select self-consistent theories of gravity working at the infrared limit. It is demonstrated that seven viable f(R)f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.Comment: 23 pages, 8 figure
    • …
    corecore