15,817 research outputs found

    Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment

    Full text link
    A self-consistent field theory was developed in the grand-canonical ensemble formulation to study transitions in a helix-coil multiblock globule. Helical and coil parts are treated as stiff rods and self-avoiding walks of variable lengths correspondingly. The resulting field-theory takes, in addition to the conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959)) parameters, also three-dimensional interaction terms into account. The appropriate differential equations which determine the self-consistent fields were solved numerically with finite element method. Three different phase states are found: open chain, amorphous globule and nematic liquid-crystalline (LC) globule. The LC-globule formation is driven by the interplay between the hydrophobic helical segments attraction and the anisotropic globule surface energy of an entropic nature. The full phase diagram of the helix-coil copolymer was calculated and thoroughly discussed. The suggested theory shows a clear interplay between secondary and tertiary structures in globular homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo

    Phase behavior of the Confined Lebwohl-Lasher Model

    Get PDF
    The phase behavior of confined nematogens is studied using the Lebwohl-Lasher model. For three dimensional systems the model is known to exhibit a discontinuous nematic-isotropic phase transition, whereas the corresponding two dimensional systems apparently show a continuous Berezinskii-Kosterlitz-Thouless like transition. In this paper we study the phase transitions of the Lebwohl-Lasher model when confined between planar slits of different widths in order to establish the behavior of intermediate situations between the pure planar model and the three-dimensional system, and compare with previous estimates for the critical thickness, i.e. the slit width at which the transition switches from continuous to discontinuous.Comment: Submitted to Physical Review

    Intercalation-enhanced electric polarization and chain formation of nano-layered particles

    Full text link
    Microscopy observations show that suspensions of synthetic and natural nano-layered smectite clay particles submitted to a strong external electric field undergo a fast and extended structuring. This structuring results from the interaction between induced electric dipoles, and is only possible for particles with suitable polarization properties. Smectite clay colloids are observed to be particularly suitable, in contrast to similar suspensions of a non-swelling clay. Synchrotron X-ray scattering experiments provide the orientation distributions for the particles. These distributions are understood in terms of competing (i) homogenizing entropy and (ii) interaction between the particles and the local electric field; they show that clay particles polarize along their silica sheet. Furthermore, a change in the platelet separation inside nano-layered particles occurs under application of the electric field, indicating that intercalated ions and water molecules play a role in their electric polarization. The resulting induced dipole is structurally attached to the particle, and this causes particles to reorient and interact, resulting in the observed macroscopic structuring. The macroscopic properties of these electro-rheological smectite suspensions may be tuned by controlling the nature and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure

    Unified algebraic treatment of resonance

    Full text link
    Energy resonance in scattering is usually investigated either directly in the complex energy plane (E-plane) or indirectly in the complex angular momentum plane (L-plane). Another formulation complementing these two approaches was introduced recently. It is an indirect algebraic method that studies resonances in a complex charge plane (Z-plane). This latter approach will be generalized to provide a unified algebraic treatment of resonances in the complex E-, L-, and Z-planes. The complex scaling (rotation) method will be used in the development of this approach. The resolvent operators (Green's functions) are formally defined in these three spaces. Bound states spectrum and resonance energies in the E-plane are mapped onto a discrete set of poles of the respective resolvent operator on the real line of the L- and Z-planes. These poles move along trajectories as the energy is varied. A finite square integrable basis is used in the numerical implementation of this approach. Stability of poles and trajectories against variation in all computational parameters is demonstrated. Resonance energies for a given potential are calculated and compared with those obtained by other studies.Comment: 15 pages, 1 Table, 7 Figures (6 are snapshots of videos

    Comparison of leakage rates of methyl bromide and sulfuryl fluoride during structural fumigations

    Get PDF
    In structural fumigations, half-loss time (HLT) is the most frequently used indicator for comparing fumigant leakage rates. In practical situations where gas leakage rates during structural fumigations are compared, environmental conditions generally are not analyzed in detail and sealing quality is assumed to be constant or fixed. This gives a false impression that a certain gas fumigant might be contained in a structure better than another fumigant. During commercial structural fumigations at the Hal Ross Flour Mill, Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA, leakage characteristics of Methyl bromide (MB) and Sulfuryl fluoride (SF) were compared by taking internal and external environmental conditions into consideration. Two sets of one 24-h MB and one 24-h SF fumigation experiments were conducted in May and August 2009. Mill sealing and fumigations were conducted by two separate commercial fumigators. After sealing, sealing quality prior to a fumigation was verified by a building pressurization test. The mill was subjected to different pressure levels generated by a specially made fan. At each pressure level, the air flow rate through a calibrated fan was measured. The observed air flow rate plotted as a function of pressure quantified leakage characteristics of the mill. In two MB and SF fumigations, gas concentrations were continuously monitored during the entire fumigation period. A weather station was installed on the roof of the mill to monitor outside barometric pressure, wind speed and direction, temperature, and relative humidity. Inside the mill, a temperature and relative humidity data logger was placed on each of the five floors of the mill. Results of this study provided a quantitative side-by-side comparison between MB and SF in the same facility. The pressurization test showed that sealing effectiveness can be quantitatively determined ahead of fumigation. It also confirmed the sealing quality for all fumigations was essentially similar. MB and SF sowed similar gas distribution and leakage characteristics. Although the observed HLTs of the fumigations were different, those differences could be explained by the differences in environmental conditions, primarily wind speed, and to a certain extent mill temperature, rather than inherent properties of MB and SF gases.Keywords: Structural fumigation, Half-loss time, Grain-processing facility, Sulfuryl fluoride, Methyl bromid

    A simplified and improved modeling approach for the structural fumigation process using computational fluid dynamics

    Get PDF
    A 3D Computational fluid dynamics (CFD) model of the fumigation process in the Hal Ross Flour Mill of Kansas State University, Manhattan, Kansas, USA, was formulated for prediction of the gas leakage rate to approximate the gas Half-loss time (HLT) during fumigation with Methyl bromide (MB) and Sulfuryl fluoride (SF). The model consisted of external and internal flow domains. The external domain was used to predict stagnation pressures generated by wind impinging on the mill’s walls. The internal domain was used to predict fumigant leakage rates in terms of HLT. Cracks on the mill’s walls represented the effective leakage areas on the internal flow domain. This modeling approach had been used by the authors (Chayaprasert and Maier) in a previous study, but it was simplified and improved in the present study. The primary simplification in the modeling approach was exclusion of the flour mill’s interior details (e.g., milling equipment), reducing the model formulation and simulation computing times. In the previous study, the gas-tightness of the internal flow domain was identified by varying the flow resistance coefficient of the effective leakage areas until the model yielded a HLT value that was close to the one observed from the experimental fumigant concentration data. In the present study, the domain gas-tightness was verified by building pressurization tests. The model was validated using data from one MB and one SF fumigation experiments. The HLTs provided by simulated fumigations were in good agreement with those determined from the experiments. The result of the present study provides further validation to the modeling approach and emphasizes the importance of building pressurization test for accurate HLT prediction. Keywords: Structural fumigation, Half-loss time, Pilot flour mill, Computational Fluid Dynamics (CFD), Building pressurization tes

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabry–Pérot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of ±0.4μm over a 721μm measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    Perdeuterated cyanobiphenyl liquid crystals for infrared applications

    Get PDF
    Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications

    Grating-coupled excitation of multiple surface plasmon-polariton waves

    Full text link
    The excitation of multiple surface-plasmon-polariton (SPP) waves of different linear polarization states and phase speeds by a surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied theoretically, using rigorous coupled-wave-analysis. The incident plane wave can be either p or s polarized. The excitation of SPP waves is indicated by the presence of those peaks in the plots of absorbance vs. the incidence angle that are independent of the thickness of the rugate filter. The absorbance peaks representing the excitation of s-polarized SPP waves are narrower than those representing p-polarized SPP waves. Two incident plane waves propagating in different directions may excite the same SPP wave. A line source could excite several SPP waves simultaneously

    Entropy-driven enhanced self-diffusion in confined reentrant supernematics

    Full text link
    We present a molecular dynamics study of reentrant nematic phases using the Gay-Berne-Kihara model of a liquid crystal in nanoconfinement. At densities above those characteristic of smectic A phases, reentrant nematic phases form that are characterized by a large value of the nematic order parameter S1S\simeq1. Along the nematic director these "supernematic" phases exhibit a remarkably high self-diffusivity which exceeds that for ordinary, lower-density nematic phases by an order of magnitude. Enhancement of self-diffusivity is attributed to a decrease of rotational configurational entropy in confinement. Recent developments in the pulsed field gradient NMR technique are shown to provide favorable conditions for an experimental confirmation of our simulations.Comment: 10 pages, 5 figure
    corecore