19,634 research outputs found
Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment
A self-consistent field theory was developed in the grand-canonical ensemble
formulation to study transitions in a helix-coil multiblock globule. Helical
and coil parts are treated as stiff rods and self-avoiding walks of variable
lengths correspondingly. The resulting field-theory takes, in addition to the
conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959))
parameters, also three-dimensional interaction terms into account. The
appropriate differential equations which determine the self-consistent fields
were solved numerically with finite element method. Three different phase
states are found: open chain, amorphous globule and nematic liquid-crystalline
(LC) globule. The LC-globule formation is driven by the interplay between the
hydrophobic helical segments attraction and the anisotropic globule surface
energy of an entropic nature. The full phase diagram of the helix-coil
copolymer was calculated and thoroughly discussed. The suggested theory shows a
clear interplay between secondary and tertiary structures in globular
homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo
Intercalation-enhanced electric polarization and chain formation of nano-layered particles
Microscopy observations show that suspensions of synthetic and natural
nano-layered smectite clay particles submitted to a strong external electric
field undergo a fast and extended structuring. This structuring results from
the interaction between induced electric dipoles, and is only possible for
particles with suitable polarization properties. Smectite clay colloids are
observed to be particularly suitable, in contrast to similar suspensions of a
non-swelling clay. Synchrotron X-ray scattering experiments provide the
orientation distributions for the particles. These distributions are understood
in terms of competing (i) homogenizing entropy and (ii) interaction between the
particles and the local electric field; they show that clay particles polarize
along their silica sheet. Furthermore, a change in the platelet separation
inside nano-layered particles occurs under application of the electric field,
indicating that intercalated ions and water molecules play a role in their
electric polarization. The resulting induced dipole is structurally attached to
the particle, and this causes particles to reorient and interact, resulting in
the observed macroscopic structuring. The macroscopic properties of these
electro-rheological smectite suspensions may be tuned by controlling the nature
and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure
Phase behavior of the Confined Lebwohl-Lasher Model
The phase behavior of confined nematogens is studied using the Lebwohl-Lasher
model. For three dimensional systems the model is known to exhibit a
discontinuous nematic-isotropic phase transition, whereas the corresponding two
dimensional systems apparently show a continuous
Berezinskii-Kosterlitz-Thouless like transition. In this paper we study the
phase transitions of the Lebwohl-Lasher model when confined between planar
slits of different widths in order to establish the behavior of intermediate
situations between the pure planar model and the three-dimensional system, and
compare with previous estimates for the critical thickness, i.e. the slit width
at which the transition switches from continuous to discontinuous.Comment: Submitted to Physical Review
Perdeuterated cyanobiphenyl liquid crystals for infrared applications
Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications
Grating-coupled excitation of multiple surface plasmon-polariton waves
The excitation of multiple surface-plasmon-polariton (SPP) waves of different
linear polarization states and phase speeds by a surface-relief grating formed
by a metal and a rugate filter, both of finite thickness, was studied
theoretically, using rigorous coupled-wave-analysis. The incident plane wave
can be either p or s polarized. The excitation of SPP waves is indicated by the
presence of those peaks in the plots of absorbance vs. the incidence angle that
are independent of the thickness of the rugate filter. The absorbance peaks
representing the excitation of s-polarized SPP waves are narrower than those
representing p-polarized SPP waves. Two incident plane waves propagating in
different directions may excite the same SPP wave. A line source could excite
several SPP waves simultaneously
Entropy-driven enhanced self-diffusion in confined reentrant supernematics
We present a molecular dynamics study of reentrant nematic phases using the
Gay-Berne-Kihara model of a liquid crystal in nanoconfinement. At densities
above those characteristic of smectic A phases, reentrant nematic phases form
that are characterized by a large value of the nematic order parameter
. Along the nematic director these "supernematic" phases exhibit a
remarkably high self-diffusivity which exceeds that for ordinary, lower-density
nematic phases by an order of magnitude. Enhancement of self-diffusivity is
attributed to a decrease of rotational configurational entropy in confinement.
Recent developments in the pulsed field gradient NMR technique are shown to
provide favorable conditions for an experimental confirmation of our
simulations.Comment: 10 pages, 5 figure
Thermal annealing study of swift heavy-ion irradiated zirconia
Sintered samples of monoclinic zirconia (alpha-ZrO2) have been irradiated at
room temperature with 6.0-GeV Pb ions in the electronic slowing down regime.
X-ray diffraction (XRD) and micro-Raman spectroscopy measurements showed
unambiguously that a transition to the 'metastable' tetragonal phase
(beta-ZrO2) occurred at a fluence of 6.5x10^12 cm-2 for a large electronic
stopping power value (approx 32.5 MeV m-1). At a lower fluence of
1.0x10^12 cm-2, no such phase transformation was detected. The
back-transformation from beta- to alpha-ZrO2 induced by isothermal or
isochronal thermal annealing was followed by XRD analysis. The
back-transformation started at an onset temperature around 500 K and was
completed by 973 K. Plots of the residual tetragonal phase fraction deduced
from XRD measurements versus annealing temperature or time are analyzed with
first- or second-order kinetic models. An activation energy close to 1 eV for
the back-transformation process is derived either from isothermal annealing
curves, using the so-called "cross-cut" method, or from the isochronal
annealing curve, using a second-order kinetic law. Correlation with the thermal
recovery of ion-induced paramagnetic centers monitored by EPR spectroscopy is
discussed. Effects of crystallite size evolution and oxygen migration upon
annealing are also addressed
A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex, South Africa
A chill sequence at the base of the Lower Zone of the western Bushveld Complex at Union Section, South Africa, contains aphanitic Mg-rich basaltic andesite and spinifex-textured komatiite. The basaltic andesite has an average composition of 15.2 % MgO, 52.8 % SiO2, 1205 ppm Cr, and 361 ppm Ni, whereas the komatiite has 18.7 % MgO, 1515 ppm Cr, and 410 ppm Ni. Both rock types have very low concentrations of immobile incompatible elements (0.14–0.72 ppm Nb, 7–31 ppm Zr, 0.34–0.69 ppm Th, 0.23–0.27 wt% TiO2), but high PGE contents (19–23 ppb Pt, 15–16 ppb Pd) and Pt/Pd ratios (Pt/Pd 1.4). Strontium and S isotopes show enriched signatures relative to most other Lower Zone rocks. The rocks could represent a ~20 % partial melt of subcontinental lithospheric mantle. This would match the PGE content of the rocks. However, this model is inconsistent with the high SiO2, Fe, and Na2O contents and, in particular, the low K2O, Zr, Hf, Nb, Ta, Th, LREE, Rb, and Ba contents of the rocks. Alternatively, the chills could represent a komatiitic magma derived from the asthenosphere that underwent assimilation of the quartzitic floor accompanied by crystallization of olivine and chromite. This model is consistent with the lithophile elements and the elevated Sr and S isotopic signatures of the rocks. However, in order to account for the high Pt and Pd contents of the magma, the mantle must have been twice as rich in PGE as the current estimate for PUM, possibly due to a component of incompletely equilibrated late veneer
41Ca in tooth enamel. part I: A biological signature of neutron exposure in atomic bomb survivors
The detection of 41Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, 41Ca atoms are produced via thermal neutron capture by stable 40Ca. Thus any 41Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure from both natural sources and radiation from the bomb. Tooth samples from five survivors in a control group with negligible neutron exposure were used to investigate the natural 41Ca content in tooth enamel, and 16 tooth samples from 13 survivors were used to estimate bomb-related neutron exposure. The results showed that the mean 41Ca/Ca isotope ratio was (0.17 ± 0.05) × 10-14 in the control samples and increased to 2 × 10-14 for survivors who were proximally exposed to the bomb. The 41Ca/Ca ratios showed an inverse correlation with distance from the hypocenter at the time of the bombing, similar to values that have been derived from theoretical free-in-air thermal-neutron transport calculations. Given that γ-ray doses were determined earlier for the same tooth samples by means of electron spin resonance (ESR, or electron paramagnetic resonance, EPR), these results can serve to validate neutron exposures that were calculated individually for the survivors but that had to incorporate a number of assumptions (e.g. shielding conditions for the survivors).Fil: Wallner, A.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; Alemania. Universidad de Viena; AustriaFil: Ruhm, W.. Helmholtz Center Munich German Research Center For Environmental Health; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Rugel, G.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; AlemaniaFil: Nakamura, N.. Radiation Effects Research Foundation; JapónFil: Arazi, Andres. Universitat Technical Zu Munich; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faestermann, T.. Universitat Technical Zu Munich; AlemaniaFil: Knie, K.. Universitat Technical Zu Munich; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Maier, H. J.. Ludwig Maximilians Universitat; AlemaniaFil: Korschinek, G.. Universitat Technical Zu Munich; Alemani
Unified algebraic treatment of resonance
Energy resonance in scattering is usually investigated either directly in the
complex energy plane (E-plane) or indirectly in the complex angular momentum
plane (L-plane). Another formulation complementing these two approaches was
introduced recently. It is an indirect algebraic method that studies resonances
in a complex charge plane (Z-plane). This latter approach will be generalized
to provide a unified algebraic treatment of resonances in the complex E-, L-,
and Z-planes. The complex scaling (rotation) method will be used in the
development of this approach. The resolvent operators (Green's functions) are
formally defined in these three spaces. Bound states spectrum and resonance
energies in the E-plane are mapped onto a discrete set of poles of the
respective resolvent operator on the real line of the L- and Z-planes. These
poles move along trajectories as the energy is varied. A finite square
integrable basis is used in the numerical implementation of this approach.
Stability of poles and trajectories against variation in all computational
parameters is demonstrated. Resonance energies for a given potential are
calculated and compared with those obtained by other studies.Comment: 15 pages, 1 Table, 7 Figures (6 are snapshots of videos
- …
