Microscopy observations show that suspensions of synthetic and natural
nano-layered smectite clay particles submitted to a strong external electric
field undergo a fast and extended structuring. This structuring results from
the interaction between induced electric dipoles, and is only possible for
particles with suitable polarization properties. Smectite clay colloids are
observed to be particularly suitable, in contrast to similar suspensions of a
non-swelling clay. Synchrotron X-ray scattering experiments provide the
orientation distributions for the particles. These distributions are understood
in terms of competing (i) homogenizing entropy and (ii) interaction between the
particles and the local electric field; they show that clay particles polarize
along their silica sheet. Furthermore, a change in the platelet separation
inside nano-layered particles occurs under application of the electric field,
indicating that intercalated ions and water molecules play a role in their
electric polarization. The resulting induced dipole is structurally attached to
the particle, and this causes particles to reorient and interact, resulting in
the observed macroscopic structuring. The macroscopic properties of these
electro-rheological smectite suspensions may be tuned by controlling the nature
and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure