1,250 research outputs found

    Spitzer observations of extragalactic H II regions - III. NGC 6822 and the hot star, H II region connection

    Full text link
    Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71-micron emission lines in nine H II regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne++^{++}, Ne+^+) and sulphur (S3+^{3+}, S++^{++}), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne+^+/Ne++^{++} and S3+^{3+}/S++^{++}. By extending our studies of H II regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2±\pm0.8). This value is in contrast to Asplund et al.'s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here we employ a new grid of SEDs computed with different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations.Comment: 22 pages, 13 figures. To be published in MNRAS. reference added and typos fixed. arXiv admin note: text overlap with arXiv:0804.0828, which is paper II by Rubin et al. (2008

    High Spectral Resolution SOFIA/EXES Observations of C2H2 towards Orion-IRc2

    Full text link
    We present high-spectral resolution observations from 12.96 - 13.33 microns towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA. These observations probe the physical and chemical conditions of the Orion hot core, which is sampled by a bright, compact, mid-infrared background continuum source in the region, IRc2. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. The isotopologue, 13CCH2, is clearly detected with high signal-to-noise. This enabled a direct measurement of the 12C/13C isotopic ratio for the Orion hot core of 14 +/- 1 and an estimated maximum value of 21. We also detected several HCN rovibrational lines. The ortho and para C2H2 ladders are clearly separate and tracing two different temperatures, 226 K and 164 K, respectively, with a non-equilibrium ortho to para ratio (OPR) of 1.7 +\- 0.1. Additionally, the ortho and para V_LSR values differ by about 1.8 +/- 0.2 km/s, while, the mean line widths differ by 0.7 +/- 0.2 km/s, suggesting that these species are not uniformly mixed along the line of sight to IRc2. We propose that the abnormally low C2H2 OPR could be a remnant from an earlier, colder phase, before the density enhancement (now the hot core) was impacted by shocks generated from an explosive event 500 yrs ago.Comment: accepted for publication in The Astrophysical Journa

    Eastern tropical Pacific corals monitor low latitude climate of the past 400 years

    Get PDF
    EXTRACT (SEE PDF FOR FULL ABSTRACT): We have measured coral growth band thickness and skeletal stable isotopic composition through a 371-year transect (AD 1583-1954) from a massive specimen of Pavona clavus from the Galápagos Islands. ... We observe a general cooling trend during 1860-1954, corresponding to the end of the Little Ice Age, an interval characterized by general warming at many mid-latitude sites. Variance at sunspot cycle frequencies in growth rate, stable isotopic, and trace element composition implies a direct or indirect link between the solar cycle and climate modulation in the eastern Pacific

    The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium

    Get PDF
    Article Authors Metrics Comments Media Coverage Abstract Author Summary Introduction Results and Discussion Materials and Methods Supporting Information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage (0) Figures Abstract We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon

    [12CII] and [13CII] 158 mum emission from NGC 2024: Large column densities of ionized carbon

    Full text link
    Context: We analyze the NGC 2024 HII region and molecular cloud interface using [12CII] and [13CII] observations. Aims: We attempt to gain insight into the physical structure of the interface layer between the molecular cloud and the HII region. Methods. Observations of [12CII] and [13CII] emission at 158 {\mu}m with high spatial and spectral resolution allow us to study the detailed structure of the ionization front and estimate the column densities and temperatures of the ionized carbon layer in the PDR. Results: The [12CII] emission closely follows the distribution of the 8 mum continuum. Across most of the source, the spectral lines have two velocity peaks similar to lines of rare CO isotopes. The [13CII] emission is detected near the edge-on ionization front. It has only a single velocity component, which implies that the [12CII] line shape is caused by self-absorption. An anomalous hyperfine line-intensity ratio observed in [13CII] cannot yet be explained. Conclusions: Our analysis of the two isotopes results in a total column density of N(H)~1.6\times10^23 cm^-2 in the gas emitting the [CII] line. A large fraction of this gas has to be at a temperature of several hundred K. The self-absorption is caused by a cooler (T<=100 K) foreground component containing a column density of N(H)~10^22 cm^-2

    Validation of Nike Fuel Band Step Counter in Children with Visual Impairments

    Get PDF
    Please view abstract in the attached PDF file
    corecore