2,193 research outputs found

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 ◦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 ◦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 ◦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 ◦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 ◦C

    Discrete solvent effects on the effective interaction between charged colloids

    Get PDF
    Using computer simulations of two charged colloidal spheres with their counterions in a hard sphere solvent, we show that the granular nature of the solvent significantly influences the effective colloidal interaction. For divalent counterions, the total effective force can become attractive generated by counterion hydration, while for monovalent counterions the forces are repulsive and well-described by a solvent-induced colloidal charge renormalization. Both effects are not contained in the traditional "primitive" approaches but can be accounted for in a solvent-averaged primitive model.Comment: 4 pages, 3 figure

    Structural Polymorphism of the Cytoskeleton: A Model of Linker-Assisted Filament Aggregation

    Full text link
    The phase behavior of charged rods in the presence of inter-rod linkers is studied theoretically as a model for the equilibrium behavior underlying the organization of actin filaments by linker proteins in the cytoskeleton. The presence of linkers in the solution modifies the effective inter-rod interaction and can lead to inter-filament attraction. Depending on the system's composition and physical properties such as linker binding energies, filaments will either orient perpendicular or parallel to each other, leading to network-like or bundled structures. We show that such a system can have one of three generic phase diagrams, one dominated by bundles, another by networks, and the third containing both bundle and network-like phases. The first two diagrams can be found over a wide range of interaction energies, while the third occurs only for a narrow range. These results provide theoretical understanding of the classification of linker proteins as bundling proteins or crosslinking proteins. In addition, they suggest possible mechanisms by which the cell may control cytoskeletal morphology.Comment: 17 pages, 3 figure

    Estimated probabilities of positive, vs. negative, events show separable correlations with covid-19 preventive behaviours

    Get PDF
    Research has associated optimism with better health-protective behaviours, but few studies have measured optimism or pessimism directly, by asking participants to estimate probabilities of events. We used these probability estimates to examine how optimism and/or pessimism relate to protecting oneself from COVID-19. When COVID-19 first reached Turkey, we asked a snowball sample of 494 Istanbul adults how much they engaged in various COVID-protective behaviours. They also estimated the probabilities of their catching COVID-19, and of other positive and negative events happening to them. Estimated probability of general positive events (optimism) correlated positively with officially-recommended helpful behaviours (e.g. wearing masks), but not with less-helpful behaviours (e.g. sharing ‘alternative’ COVID-related information online). Estimated probabilities of general negative events (pessimism), or of catching COVID, did not correlate significantly with helpful COVID-related behaviours; but they did correlate with psychopathological symptoms, as did less-helpful COVID-related behaviours. This shows important nuances can be revealed by measuring optimism and pessimism, as separate variables, using probability estimates.WOS:000766608100006Scopus - Affiliation ID: 60105072PMID: 35228768Social Sciences Citation IndexQ2ArticleUluslararası işbirliği ile yapılan - EVETMarch2022YÖK - 2021-22Hazira

    On the Properties of Two Pulses Propagating Simultaneously in Different Dispersion Regimes in a Nonlinear Planar Waveguide

    Get PDF
    Properties of two pulses propagating simultaneously in different dispersion regimes, anomalous and normal, in a Kerr-type planar waveguide are studied in the framework of the nonlinear Schroedinger equation. Catastrophic self-focusing and spatio-temporal splitting of the pulses is investigated. For the limiting case when the dispersive term of the pulse propagating in the normal dispersion regime can be neglected an indication of a possibility of a stable self-trapped propagation of both pulses is obtained.Comment: 18 pages (including 15 eps figures

    Origin of magnetic interactions and their influence on the structural properties of Ni2MnGa and related compounds

    Full text link
    In this work, we perform first principles DFT calculations to investigate the interplay between magnetic and structural properties in Ni2MnGa. We demonstrate that the relative stability of austenite (cubic) and non-modulated martensite (tetragonal) phases depends critically on the magnetic interactions between Mn atoms. While standard approximate DFT functionals stabilize the latter phase, a more accurate treatment of electronic localization and magnetism, obtained with DFT+U, suppresses the non-modulated tetragonal structure for the stoichiometric compound, in better agreement with the experiments. We show that the Anderson impurity model, with Mn atoms treated as magnetic impurities, can explain this observation and that the fine balance between super-exchange RKKY type interactions mediated by Ni d and Ga p orbitals determines the equilibrium structure of the crystal. The Anderson model is also demonstrated to capture the effect of the number of valence electrons per unit cell on the structural properties, often used as an empirical parameter to tune the behavior of Ni2MnGa based alloys. Finally, we show that off-stoichiometric compositions with excess Mn promote transitions to a non-modulated tetragonal structure, in agreement with experiments.Comment: 16 pages, 25 figure
    corecore