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a b s t r a c t

Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for

thermoluminescence (TL) peaks occurring near 100 and 200 1C in copper-doped lithium tetraborate

(Li2B4O7) crystals. As-grown crystals have Cuþ and Cu2þ ions substituting for lithium and have Cuþ

ions at interstitial sites. All of the substitutional Cu2þ ions in the as-grown crystals have an adjacent

lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room

temperature produces a second and different Cu2þ EPR spectrum when a hole is trapped by

substitutional Cuþ ions that have no nearby defects. These two Cu2þ trapped-hole centers are referred

to as Cu2þ-VLi and Cu2þ
active, respectively. Also during the irradiation, two trapped-electron centers in the

form of interstitial Cu0 atoms are produced when interstitial Cuþ ions trap electrons. They are observed

with EPR and are labeled Cu0
A and Cu0

B. When an irradiated crystal is warmed from 25 to 150 1C, the

Cu2þ
active centers have a partial decay step that correlates with the TL peak near 100 1C. The concentra-

tions of Cu0
A and Cu0

B centers, however, increase as the crystal is heated through this range. As the

crystal is further warmed between 150 and 250 1C, the EPR signals from the Cu2þ
active hole centers and

Cu0
A and Cu0

B electron centers decay simultaneously. This decay step correlates with the intense TL peak

near 200 1C.

Published by Elsevier B.V.

1. Introduction

Lithium tetraborate (Li2B4O7) crystals doped with copper,
silver, or other transition-metal ions are important candidates
for thermoluminescence (TL) dosimetry applications. Radiative
processes associated with these dopants are efficient, and bright
above-room-temperature TL peaks are observed. These crystals
also have potential for use as neutron detectors because 6Li and
10B have large capture-cross-sections for thermal neutrons.
During the last several decades, there have been numerous studies
of photoluminescence [1–5] and thermoluminescence [6–18] from
Li2B4O7 crystals. Other reports [19–25] describe radiation-induced
defects and explore the effects of radiation on the optical proper-
ties of Li2B4O7. Many investigations have focused on copper, silver,
and manganese impurity ions. These dopants are easily incorpo-
rated into a crystal during growth, and they greatly increase the
TL light output. Takenaga and coworkers [26] were the first to

investigate the TL properties of copper-doped Li2B4O7 crystals.
They found that crystals doped with copper exhibited higher TL
sensitivity than crystals doped with manganese. Copper-doped
crystals also have linear TL output with radiation exposure up to
105 R and low loss of sensitivity due to humidity. The emitted light
from Cu-doped crystals is near the blue end of the visible
spectrum [17]. This matches the optimum sensitivity of photo-
multiplier tubes and makes these crystals well-suited for dosime-
try and radiation-detection applications.

A recent electron paramagnetic resonance (EPR) and electron-
nuclear double resonance (ENDOR) study by Swinney et al. [27]
showed that as-grown undoped Li2B4O7 crystals contain large
concentrations of oxygen vacancies and lithium vacancies. In the
as-grown crystals, these vacancies prefer to be in nonparamag-
netic forms (with no trapped electrons or holes). They have
opposite ‘‘effective’’ charges and thus act as charge compensators
for each other (two lithium vacancies compensate one oxygen
vacancy). During an irradiation at low temperature (i.e., near
77 K), these vacancies are the dominant radiation-induced
electron and hole traps, respectively, in undoped crystals. The
trapped-electron center (an oxygen vacancy with one trapped
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electron) is thermally stable at room temperature, but the
trapped-hole center (a lithium vacancy with a hole trapped on
an adjacent oxygen ion) rapidly decays when the temperature is
raised above 100 K. This lack of a trapped hole center and the
related lack of a radiatively efficient recombination center
explains why there are no strong TL peaks above room tempera-
ture in undoped Li2B4O7 crystals. The situation changes, however,
when the crystal is doped with copper. In these crystals, Cuþ ions
substitute for Liþ ions and also occupy interstitial sites. The Cuþ

ions at the interstitial sites provide charge compensation for
lithium vacancies. Together, these effects suggest that doping
with copper will reduce the concentrations of the isolated oxygen
vacancies and lithium vacancies that form during growth. By
extension, this means that the copper ions must assume the roles
of both electron trap and hole trap in order to have an intense
above-room-temperature TL peak in Cu-doped Li2B4O7 crystals. It
is widely accepted that the substitutional Cu2þ ions are the
primary trapped-hole center, but thus far, no direct experimental
evidence for the identity of the primary trapped-electron centers
has been available. Substitutional Cuþ ions could act as the
electron trap (i.e., the substitutional Cuþ ions could be ampho-
teric), but substitutional Cu0 centers would be relatively shallow
and are not expected to be stable above room temperature. We
point out that a similar problem has been addressed in the EPR
and ENDOR study of Ag-doped Li2B4O7 crystals by Brant et al.
[28]. Substitutional Ag2þ hole traps and interstitial Ag0 electron
traps, both radiation-induced, were identified by those investiga-
tors, and a pulsed anneal verified that the thermal decay of the
EPR signals from the Ag2þ and Ag0 centers coincided with an
intense above-room-temperature TL peak.

In the present investigation of Li2B4O7, EPR is used to identify and
characterize a new radiation-induced Cu2þ trapped-hole center
(labeled Cu2þ

active) and two new radiation-induced interstitial Cu0

trapped-electron centers (labeled Cu0
A and Cu0

B). These three trap-
ping centers have not been previously reported in the literature.
Prior to an irradiation with X-rays, an EPR spectrum assigned to
Cu2þ ions with an adjacent lithium vacancy is observed. This
spectrum, present in as-grown crystals, has been reported by
Corradi et al. [29,30]. When a Cu-doped Li2B4O7 crystal is exposed
to x rays at room temperature, a portion of the isolated substitu-
tional Cuþ ions trap a hole and form Cu2þ hole centers ðCu2þ

activeÞ. At
the same time, a portion of the interstitial Cuþ ions trap electrons
and form two distinct Cu0 electron centers (Cu0

A and Cu0
B). The

thermal stabilities of these radiation-induced Cu-related defects are
determined by performing isochronal anneals at progressively
higher temperatures and observing their effect on the intensity of
the EPR signals. Decay steps of the Cu2þ

active center correlate with the
two above-room-temperature TL peaks, one near 100 1C and the
other near 200 1C. The concentration of Cu0

A and Cu0
B centers,

however, increases as the crystal is warmed from room temperature
to 125 1C. This suggests that electrons are thermally released from a
third unidentified defect (possibly oxygen vacancies). Some of these
released electrons recombine with the radiation-induced trapped
holes and give rise to the TL peak near 100 1C, while the rest of the
released electrons are trapped and form the Cu0

A and Cu0
B centers. As

the crystal is warmed from 150 to 250 1C, the Cu0
A and Cu0

B electron
centers and Cu2þ

active hole centers decay at the same time, and this
electron–hole recombination produces the TL peak near 200 1C.

2. Experimental

The Cu-doped Li2B4O7 single crystal used in this study was grown
by the Czochralski technique at the Institute of Physical Optics (L’viv,
Ukraine). The copper dopant level in the starting material was 0.015
at%. EPR samples with dimensions of approximately 2�3�1 mm3

were cut from the larger boule. Li2B4O7 crystals have tetragonal
symmetry (space group I41cd) with lattice constants a¼9.475 Å and
c¼10.283 Å [31–34]. In this lattice, each lithium ion has five nearest-
neighbor oxygen ions, and all lithium sites are crystallographically
equivalent. The basic building-block is the (B4O9)6� covalent unit
that is composed of two BO3 and two BO4 units. A schematic
representation of the crystal structure is presented in Fig. 1, showing
the (B4O9)6� unit and one adjacent lithium ion with its five nearest
neighbor oxygen ions [33,34].

EPR data were taken using a Bruker EMX spectrometer operating
near 9.4 GHz. Low temperatures (25–45 K) were achieved with an
Oxford helium-gas flow system. A proton NMR gaussmeter was
used to measure the static magnetic field and a MgO:Cr3þ crystal
(g¼1.9800) provided corrections for the small difference in field
strength between the gaussmeter probe tip and the sample. Samples
were X-ray-irradiated at room temperature with a tube operating at
50 kV. Irradiation times were 60 min. The X-rays did not produce
any noticeable change in the color of the crystals.

Thermoluminescence glow curves were taken using a Harshaw
TLD-3500 reader. This reader detected the total light output using
a photomultiplier tube. The spectral dependence of the emitted
light was not obtained. In order to minimize the effect of optical
and thermal fading, TL data were taken within a few hours of an
X-ray irradiation, and the sample was kept in the dark prior to the
TL measurements.

3. EPR and TL results

3.1. Radiation-induced Cu2þ centers

Prior to an irradiation with X-rays, our copper-doped Li2B4O7

sample contained a large concentration of Cu2þ (3d9) ions, as
shown by the intense EPR spectrum in Fig. 2(a). These data were
taken at 25 K with the magnetic field parallel to the [1 1 0]
direction in the crystal. Corradi et al. [29] first reported this
Cu2þ signal and performed a complete angular dependence study
to determine the principal values and principal-axis directions of
the g matrix and the Cu-hyperfine matrices. We assign the EPR
spectrum in Fig. 2(a) to a substitutional Cu2þ ion on a Liþ cation
site, with charge compensation provided by an adjacent lithium
vacancy. We refer to this defect as the Cu2þ-VLi center. The Cu2þ-
VLi center has eight crystallographically equivalent orientations in
the tetragonal Li2B4O7 lattice. When the magnetic field is aligned
along the [1 1 0] direction, these eight sites separate into two
magnetically inequivalent sets, each with fourfold degeneracy.
The two sets of lines associated with the Cu2þ-VLi defect are
indicated by the upper stick diagram in Fig. 2(a). Copper has two
magnetic isotopes, 63Cu (69.2% abundant) and 65Cu (30.8%

O1
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O2
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Fig. 1. An arbitrary projection of a portion of the Li2B4O7 crystal lattice. The basic

B4O9 unit and the five oxygen ions neighboring a lithium site are shown. The ion

labeling scheme follows the convention of Refs. [27,28,33,34].
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abundant), both with I¼3/2. The magnetic moments of 63Cu and
65Cu are similar (with 65Cu being slightly larger), so the lines
associated with the separate isotopes are not always resolved
(this is the case in the lower-field set in Fig. 2(a)). In the high-field
set, the outer 63Cu and 65Cu lines are resolved and the inner lines
near 326 and 337 mT are distorted due to the overlap of 63Cu and
65Cu lines. The upper stick diagram in Fig. 2(a) indicates the
averaged positions of the 63Cu and 65Cu hyperfine lines.

The spectrum in Fig. 2(b) was taken after our Cu-doped
Li2B4O7 crystal was exposed to x rays at room temperature. This
spectrum was also taken at 25 K with the magnetic field along the
[1 1 0] direction, and thus can be directly compared to the
spectrum in Fig. 2(a). The EPR signal intensity of the Cu2þ-VLi

center does not change with irradiation. We do, however, see a
new Cu2þ center appear in the same magnetic field region as the
Cu2þ-VLi center. The red stick diagram in Fig. 2(b) identifies the
two magnetically inequivalent orientations of this new Cu2þ

center. The g matrix and the hyperfine matrices for the Cu2þ-VLi

center and this new Cu2þ center are similar. We assign the new
defect to a substitutional Cu2þ ion replacing a Liþ ion with no
other defects nearby, and refer to it as the active Cu2þ center
(Cu2þ

active). The lines from the two magnetic copper isotopes are not
resolved in the Cu2þ

active spectrum shown in Fig. 2(b), although the
highest-field 65Cu line is partially visible near 332 mT. The Cu2þ

active

defect is produced when an isolated substitutional Cuþ ion traps
a hole during the irradiation, thus forming a Cu2þ ion. In Fig.2(b),
the concentration of Cu2þ-VLi centers and radiation-induced
Cu2þ

active centers are nearly the same (their individual concentra-
tions are estimated to be 2.1�1018 cm�3). Thus, as observed with
EPR, the production of the radiation-induced Cu2þ

active center nearly
doubles the overall concentration of Cu2þ ions in the crystal.
Unlike the Cu2þ-VLi center, the radiation-induced Cu2þ

active center
does not have a neighboring lithium vacancy for charge compen-
sation. Instead, it is charge compensated nonlocally by an inter-
stitial Cu0 atom that forms when an interstitial Cuþ ion traps an
electron during the irradiation (see Section 3.2). This difference in
the surrounding environment of the Cu2þ-VLi and the Cu2þ

active

centers slightly changes the g values and 63,65Cu hyperfine

parameters and causes the similar, yet distinct, EPR spectra seen
in Fig. 2(b).

3.2. Radiation-induced Cu0 centers

Copper ions also play the role of electron trap in doped Li2B4O7

crystals. Fig. 3 shows two previously unreported EPR spectra,
representing defects that we label Cu0

A and Cu0
B. These data were

taken at 45 K with the magnetic field along the [0 0 1] direction.
The Cu0

A and Cu0
B signals were not present prior to the irradiation

with x rays. The spectra from the Cu0
A and Cu0

B centers are
complex. The four widely separated groups of lines in Fig. 3,
indicated by red and blue stick diagrams, are the result of large
hyperfine interactions with 63Cu and 65Cu nuclei. These groups
have very little angular dependence and their spacing increases
from low to high field because of the large hyperfine interaction.
Each of the four primary Cu hyperfine lines is further split into
many additional superhyperfine lines by an interaction with one
boron neighbor (both 10B and 11B lines are resolved). These large
Cu hyperfine parameters and their isotropic nature establish that
the Cu0

A and Cu0
B centers are, to first order, copper atoms. In Fig. 3,

the concentration of Cu0
Acenters is approximately 2.7 times

greater than the concentration of Cu0
B centers, and their combined

concentration is approximately 5.5�1017 cm�3. This total is
about a factor of four lower than the concentration of Cu2þ

active

centers produced by the same irradiation.
Fig. 4 provides an expanded view of the lowest- and highest-

field groups of EPR lines associated with the Cu0
A and Cu0

B defects.
The primary lines can be separated into sets of four based on their
relative spacings and intensities, with each set of four due to the
interaction with a 11B nucleus. The stick diagrams in Fig. 4
illustrate these sets of four lines, with the red lines representing
Cu0

A and the blue lines representing Cu0
B. Close inspection of the

low-field side of Fig. 4 reveals that the intensity ratio of the two
Cu0

A sets are in good agreement with the ratio of the natural
abundance of the two magnetic copper isotopes. Hence, these two
sets are labeled 63Cu and 65Cu. Similar analysis of the Cu0

B center
lines shows the same result, and the sets are labeled 63Cu and

Magnetic Field (mT)
275 295 315 335 355

Cu2+-VLi

Cu2+
active

Fig. 2. EPR spectra illustrating the production of the Cu2þ
active center. These data were taken at 25 K with the magnetic field aligned along the [1 1 0] direction. (a) This

spectrum was taken prior to irradiation and shows only the Cu2þ-VLi center. (b) This spectrum was taken after an X-ray irradiation at room temperature and shows both

the Cu2þ-VLi center and the Cu2þ
active center. The stick diagrams indicate the averaged positions of the 63Cu and 65Cu lines. (For interpretation of the references to color in

this figure, the reader is referred to the web version of this article.)
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65Cu. Values for the 63Cu and 65Cu hyperfine parameters are listed
in Table 1 for both centers. The isotropic g value of both centers is
2.002370.0005. For each center, the ratio of the 65Cu and 63Cu
hyperfine parameters is 1.07, in agreement with the ratio of the
known magnetic moments of the two Cu isotopes.

In Fig. 4, each copper hyperfine line is split into four lines as a
result of a superhyperfine interaction with a nearby 11B nucleus
(80.2% abundant, I¼3/2). The stick diagrams in Fig. 4 are divided
into sets of four to reflect this superhyperfine interaction. Addi-
tional lines due to a 10B nucleus (19.8% abundant, I¼3) are easily
seen within the group of lines on the low-field side of Fig. 4, and
thus verifies that boron is responsible for this superhyperfine
interaction. There are small lines near 200, 204, and 210 mT
that are part of a set of seven lines from a 10B nucleus. Other
lines that are part of this set of seven are barely visible as
shoulders near 202 and 209 mT. This pattern of seven lines of
small intensity and four lines of larger intensity is consistent with
a boron interaction. The magnetic moment of 10B is nearly three
times smaller than the magnetic moment of 11B, so the seven 10B
superhyperfine lines are expected to appear between the 11B lines.
The assignment of boron as the nucleus responsible for the

superhyperfine interaction is further supported by the ratio of
the splitting between adjacent EPR lines for the two boron
isotopes. The average splitting between adjacent 10B lines is
1.842 mT, while the average splitting between adjacent 11B lines
is 5.261 mT. The ratio of these average splittings is 2.855, which is
in good agreement with the known 2.987 ratio of the 10B and 11B
magnetic moments. Only the 10B superhyperfine lines mentioned
above are fully visible in Fig. 4; the remaining 10B lines in the Cu0

A

center as well as all of the 10B lines in the Cu0
B center are either

overlapped by 11B superhyperfine lines or are too weak to be
observed.

In our previous publication describing the identification of
silver electron and hole traps in silver-doped Li2B4O7 crystals [28],
we observed a similar superhyperfine behavior for the interstitial
Ag0 center. The hyperfine lines of the two silver isotopes were
each split into four superhyperfine lines, due to an interaction
with an I¼3/2 nucleus. At that time, we could not definitively
assign the interaction to a boron nucleus because the 10B lines
were not visible. With the information we have obtained in the
present study of Cu-doped Li2B4O7, we conclude that the addi-
tional splitting of silver hyperfine lines in the Ag0 electron center

Magnetic Field (mT)
420 430 440 450 460 470160 170 180 190 200 210 220

65Cu 65Cu

65Cu 65Cu

63Cu 63Cu

63Cu 63Cu
0
ACu

0
BCu

}

}

Fig. 4. Expanded view of the lowest and highest field sets of lines in Fig. 3 for the Cu0
Aand Cu0

B centers. This spectrum was taken at 45 K with the magnetic field along the

[0 0 1] direction. The stick diagrams indicate the four 11B superhyperfine lines associated with the outer 63Cu and 65Cu lines identified in Fig. 3 (red for the Cu0
A center and

blue for the Cu0
B center). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Magnetic Field (mT)
150 200 250 300 350 400 450

Cu2+ ions

63Cu

65Cu

63Cu
65Cu

0
ACu

0
BCu}

}

Fig. 3. EPR spectrum showing the Cu0
A and Cu0

B centers. These data were taken at 45 K with the magnetic field along the [0 0 1] direction. The stick diagrams indicate the

midpoints of the sets of 63Cu and 65Cu hyperfine lines for each center (red for the Cu0
A center and blue for the Cu0

B center). The off-scale signals near 275 mT are from the

Cu2þ-VLi and Cu2þ
active centers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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spectrum in silver-doped Li2B4O7 is due to an interaction with a
neighboring boron nucleus [28].

3.3. Thermal stability of radiation-induced defects

The thermal stabilities of the radiation-induced charge states
of copper in our Li2B4O7 crystals were determined by monitoring
their EPR signals during an isochronal pulsed anneal experiment.
Fig. 5 shows the changes in concentrations of the Cu2þ

active centers
and the Cu0

A and Cu0
B centers as a crystal is heated above room

temperature after being irradiated with X-rays at room tempera-
ture. These annealing curves have been separately normalized to
the maximum signals observed. The blue trace is the EPR signal
intensity of the Cu2þ

active center and the red trace is the combined
EPR signal intensity of the Cu0

A and Cu0
B centers. We did not

observe a difference in the thermal decay of the Cu0
A and Cu0

B

electron centers, i.e., they have the same thermal stability. The
pulsed anneal experiment was carried out using the following
procedure. After the crystal was irradiated with x rays for 60 min
at room temperature, the EPR signal intensities of the radiation-
induced hole and electron centers were recorded at 25 and 45 K,
respectively, with the magnetic field aligned along the [1 1 0]
direction. The two low-temperature monitoring temperatures are
used because the Cu2þ

active spectrum is best observed at 25 K and
the Cu0

A and Cu0
B spectra are best observed at 45 K. After taking the

initial spectra, the crystal was removed from the EPR microwave
cavity and placed for two minutes in a furnace that had been

preheated to 75 1C. The crystal was then returned to the micro-
wave cavity, and the EPR signal intensities were again recorded at
25 and 45 K. This heating process was repeated at 25 1C intervals
from 75 to 275 1C. The ‘‘effective’’ heating rate of the crystal
during this pulsed anneal experiment was approximately 0.2 1C/s.
As shown in Fig. 5, between room temperature and 125 1C, the
concentration of the Cu2þ

active centers decreases and the combined
concentration of the Cu0

A and Cu0
B centers increases.

A TL glow curve, representing total light output from the
Cu-doped Li2B4O7 crystal after an X-ray irradiation at room
temperature, is also shown in Fig. 5. The heating rate used to
obtain this glow curve was 1 1C/s, the slowest rate allowed by our
Harshaw reader. Two TL peaks are observed, one near 100 1C and
the other near 200 1C. The TL peak near 100 1C occurs in the same
temperature range as the initial decay step of the EPR signal from
the Cu2þ

active center. Interestingly, the concentrations of the Cu0
A and

Cu0
B centers increase over this temperature range. The TL peak

near 200 1C correlates quite well with the simultaneous thermal
decay of the Cu2þ

active center and the Cu0
A and Cu0

B centers. There are
reports in the literature of the 100 and 200 1C TL peaks in Cu-
doped Li2B4O7 [14,18,26] and some authors have reported two TL
peaks, at slightly different temperatures in crystals doped with
manganese [35,36]. Only one above-room-temperature TL peak
has been reported for silver-doped Li2B4O7 crystals [28].

4. Discussion

The present EPR study shows that our as-grown copper-doped
Li2B4O7 crystal contains four distinct copper defects. One is a
substitutitional Cuþ ion with no nearby perturbations. A second
is a substitutional Cu2þ ion adjacent to a lithium vacancy (Cu2þ-
VLi). The remaining two are interstitial Cuþ ions in slightly
different environments. Of these four, only the Cu2þ-VLi center
is paramagnetic and thus visible with EPR in the as-grown crystal.
Corradi et al. [29] were the first to observe this EPR spectrum in
Li2B4O7 crystals. More recently, Swinney et al. [27] have shown
that large concentrations of lithium and oxygen vacancies are
usually present in as-grown undoped Li2B4O7 crystals.

When irradiated with X-rays at room temperature, we find
that three of these four defects can change charge state. The
ionizing radiation produces large concentrations of separated
(uncorrelated) electrons and holes in the lattice. Many of these
immediately recombine while others become stabilized at trap-
ping sites. During the irradiation, isolated substitutional Cuþ ions
trap holes and convert to Cu2þ ions, thus forming the defect we
have labeled the Cu2þ

active center. The Cu2þ-VLi centers, on the other
hand, do not change charge state during the irradiation. Thus,
after the irradiation, two distinct Cu2þ EPR spectra are present.
The Cu2þ

active and the Cu2þ-VLi spectra occupy the same regions of
magnetic field and have significant overlapping of lines for all
orientations of the crystal. By comparing spectra taken before and
after the irradiation, we are able to identify the lines associated
with the Cu2þ

active center. Although a complete set of angular data
was not collected and analyzed, a cursory examination of the
spectra at various angles reveals that the spin-Hamiltonian
parameters for the two centers differ only slightly. The complete
set of parameters for the Cu2þ-VLi center have been provided by
Corradi et al. [29]. In an earlier study characterizing Ag2þ and Ag0

impurities in silver-doped Li2B4O7 [28], an EPR spectrum attribu-
table to a Ag2þ-VLi center was not observed in the as-grown
crystals. This suggests that our copper-doped Li2B4O7 crystals
must have a higher concentration of lithium vacancies than the
earlier silver-doped crystals.

Also during the irradiation, electrons are trapped at interstitial
Cuþ ions and form two distinct copper atoms, labeled Cu0

A and Cu0
B.

Table 1

Spin-Hamiltonian parameters for the Cu0 electron centers (Cu0
A and Cu0

B) in

Cu-doped Li2B4O7 crystals.

g A(63Cu) A(65Cu)

Cu0
A

2.0023 2178–2333 MHz

Cu0
B

2.0023 2480–2663 MHz

These values were obtained from the EPR spectrum in Fig. 3. Estimated error limits

are70.0005 for the g values and 715 MHz for the A values.
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Fig. 5. TL glow curve from a Cu-doped Li2B4O7 crystal and the normalized thermal

stabilities of the Cu2þ
active center (blue) and the Cu0

A and Cu0
B centers (red), as

determined by EPR. The EPR data points were obtained by monitoring the signals

at 25 K and 45 K, respectively, during a series of pulsed anneals. The effective

heating rate during the EPR pulsed anneal experiment was 0.2 1C/s. The TL glow

curve (black), also normalized, was obtained by measuring the total light output

and using a heating rate of 1 1C/s. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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These two centers have slightly different Cu hyperfine constants,
presumably because of differing environments. It is possible that
the Cu0

A and Cu0
B centers could be substitutional atoms, i.e.,

substitutional Cuþ ions could trap an electron and form substitu-
tional Cu0 atoms. However, our observation of a significant
hyperfine interaction with one boron ion in the Cu0

A and Cu0
B EPR

spectra strongly suggests that these centers occupy interstitial
positions. For the Cu0

A and Cu0
B centers, the unpaired electron

occupies a Cu 4s orbital, and this is the reason for the large
hyperfine splittings associated with these centers. The measured
isotropic 63Cu hyperfine constants of 2178 and 2480 MHz for the
Cu0

A and Cu0
B centers, respectively, are each less than half of the

isotropic hyperfine constant of 5995 MHz predicted by Morton and
Preston [37] for 63Cu. This means that in each center, approxi-
mately 35–40% of the unpaired spin is in a 4s orbital. The
remaining spin density is located on the neighboring boron ion
(seen in the superhyperfine interaction in Figs. 3 and 4) and on
neighboring oxygen ions. The interactions with oxygen nuclei
would not produce detectable superhyperfine lines due to the
low abundance of the magnetic oxygen isotope (17O: I¼5/2, 0.038%
abundant). A significant overlap of the unpaired spin density onto
only one boron ion is not expected if the Cu0 atom occupies a
regular Liþ site. The distance between a lithium site and its nearest
boron neighbors is, on average, about 2.7 Å. For a Cu0 atom
substituting for a Liþ ion, we expect more of the unpaired spin
density to remain in the 4s orbital, and hence, produce a larger
isotropic Cu hyperfine parameter than what is observed. The
relatively small Cu 4s hyperfine contribution and the significant
superhyperfine interaction with one boron nucleus provide strong
evidence that the Cu0

A and Cu0
B centers are interstitial copper

defects. Thus, our EPR results agree with the proposal of Corradi
et al. [30] that Cuþ ions occupy interstitial positions in as-grown
copper-doped Li2B4O7 crystals. These interstitial Cuþ ions trap
electrons and convert to Cu0 centers during an x-ray irradiation. It
is interesting that Cuþ ions substituting for Liþ ions do not show
amphoteric behavior, i.e., Cu0 atoms are not produced at substitu-
tional sites during room-temperature irradiations.

Fig. 5 shows the correlation between the thermal stability of
the radiation-induced defects, as determined with EPR, and the TL
glow peaks in a copper-doped Li2B4O7 crystal. The thermal decay
of the Cu2þ

active EPR signal occurs in two distinct steps, one step
between room temperature and 125 1C and the other between
150 and 250 1C. The EPR spectra of the Cu0

A and Cu0
B centers also

change in these two temperature regions; their concentrations
increase between room temperature and 125 1C and decrease
between 150 and 250 1C. Initially, we focus on the second of these
two steps, where the simultaneous decrease in EPR signals
directly correlates with the TL peak at 200 1C. The EPR results
indicate that the Cu0

A and Cu0
B centers revert to interstitial Cuþ

ions and the Cu2þ
active centers revert to substitutional Cuþ ions in

this higher temperature range, i.e., electron–hole recombination
occurs. We are unable to determine the recombination site
because we do not know whether the Cu2þ

active centers release a
hole or the Cu0

A and Cu0
B centers release an electron. In other

words, our data does not distinguish between a hole recombining
with an electron at the Cu0

A and Cu0
B sites or an electron

recombining with a hole at the Cu2þ
active site. The important result

is that we have identified the two defects, one electronlike and
one holelike, that participate in the recombination process and
are responsible for the TL peak near 200 1C.

The recombination step in Fig. 5, occurring between room
temperature and 125 1C, coincides with the low-temperature TL
peak near 100 1C. A unique feature of this lower-temperature
recombination step is the increase in concentration of the Cu0

A and
Cu0

B centers. Their growth eliminates the possibility that electrons
are being released from these centers. Also, it appears that holes

are not being released from the Cu2þ
active center in this temperature

region, because their release would result in a decrease in the
concentration of the Cu0

A and Cu0
B centers (which is opposite to the

observed behavior). The results shown in Fig. 5 suggest that
electrons are released from a third unobserved and unidentified
defect during this initial recombination step. Some of these
electrons released from the third defect recombine with trapped
holes at the Cu2þ

active center and produce the TL peak near 100 1C in
Fig. 5. The rest of the electrons released from this third unob-
served defect are trapped at interstitial Cuþ ions and form
additional Cu0

A and Cu0
B centers, thus accounting for the increase

in concentration of these two centers. A candidate for this third
defect that releases electrons is oxygen vacancies. Using EPR [27],
it has previously been shown that oxygen vacancies are incorpo-
rated into Li2B4O7 crystals during growth and that they trap
electrons when the crystal is irradiated with X-rays. Thus far, an
EPR signal attributed to oxygen vacancies has not been detected
in our Cu-doped samples after an irradiation at room tempera-
ture. Because of their lower concentrations compared to copper, it
is not likely that trace amounts of other transition-metals ions are
this third defect. The release of electrons over this temperature
range correlates with the previously observed increase in surface
conductivity of Cu-doped Li2B4O7 [38].

5. Summary

The complex defect chemistry of copper in Li2B4O7 crystals has
been clarified in the present study by using the EPR technique.
We find that copper can act both as an electron trap and a hole
trap in these crystals. Unirradiated as-grown single crystals of
copper-doped Li2B4O7 contain both nonparamagnetic Cuþ and
paramagnetic Cu2þ ions. The Cu2þ ions occupy lithium sites, with
an adjacent lithium vacancy providing charge compensation
(these are referred to as Cu2þ-VLi centers). The Cuþ ions occupy
both lithium sites and interstitial positions. During an X-ray
irradiation at room temperature, the Cuþ ions on lithium sites
trap holes and convert to Cu2þ centers (these are referred to as
Cu2þ

active centers). These Cu2þ
active centers do not have an adjacent

lithium vacancy. At the same time, electrons are trapped at
interstitial Cuþ ions, converting them to paramagnetic Cu0 atoms
(these are referred to as Cu0

A and Cu0
B centers). The two interstitial

centers have slightly different environments and can easily be
distinguished in EPR experiments.

Two TL peaks are observed when an irradiated crystal is
heated above room temperature. A glow peak near 100 1C occurs
when electrons that are thermally released from an unidentified
defect recombine with the radiation-induced trapped holes at the
Cu2þ

active center. We tentatively suggest that these unidentified
electron traps are oxygen vacancies. Other electrons released
from the unidentified electron centers are trapped at the Cu0

A

and Cu0
B centers, as shown by the increase in the Cu0

A and Cu0
B EPR

signals as the crystal goes from room temperature to 125 1C. A
second, more intense TL peak near 200 1C is observed in the same
temperature range where the EPR signals from the Cu2þ

active center
and the Cu0

A and Cu0
B centers simultaneously decay. We have not

established whether this latter recombination process is initiated
by electron release or hole release.
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