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Avoiding Overconfidence in Predictions of
Residential Energy Demand through Identification

of the Persistence Forecast Effect
Huseyin Burak Akyol, Chris Preist, and Daniel Schien

Abstract—Forecasting domestic electricity consumption is im-
portant for a wide range of modern power system solutions
and smart applications that support network operation, grid
stability, and demand-side management, most of which depend
on robust and accurate predictions. The methods producing
these predictions infer future load from statistical regularity in
historical data. If such regularity is lacking, predictions then
regress towards the most recently observed consumption value
used in the input set. Predictions then follow the actual load data
one step behind in time, potentially affecting the robustness of
predictions and functionality of applications. Current evaluation
methods do not detect this behaviour which may result in
overconfidence in prediction results. In this study, we I) define
and systematically analyse this behaviour, which we label the
Persistence Forecast Effect and illustrate its impacts, II) propose
a novel method, called 1-Step-Shifting, to detect its presence, and
III) analyse and establish the relationship between irregularity
in data and the effect. Further, we provide a case study applying
state-of-the-art forecasting techniques to a real-world dataset of
electricity consumption data from 69 households in order to
demonstrate the Persistence Forecast Effect, its implications, and
its relationship to statistical regularity in historical data.

Index Terms—Demand forecasting, Demand-side management,
Energy consumption, Energy efficiency, Time-series analysis.

I. INTRODUCTION

W ITH the integration of information and communication
technologies and advanced metering infrastructures,

new opportunities arise to improve our capacity to understand
and efficiently manage electricity consumption at all levels of
the electricity grid, including households [1].

In most countries, household electricity consumption ac-
counts for a significant proportion of the overall demand [2],
[3]; and many opportunities remain for efficiency improve-
ments and alleviation of the volatile load that the households
bring into the power systems [4]. To this end, households
are increasingly equipped with smart sensors, storage devices,
and distributed and renewable energy generators to optimise
consumption and minimise waste through intelligent and au-
tomatic energy management systems [5], [6]. Such systems,
which enable household energy users to better manage their
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consumption, and system operators to maintain the grid relia-
bility and supply/demand balance, inevitably rely on accurate
and robust consumption forecasts [1], [7]. However, achieving
accurate and robust consumption forecasts at the household
level is considerably difficult owing to the high volatility and
the lack of regularity in load demand [8], [9] that arise from a
number of complex factors, such as dweller’s lifestyle, income,
cultural background, occupancy, location, weather conditions
and more [10], [11]. This volatility can adversely affect the
robustness and reliability of forecasts [1], [9], [12] as time-
series prediction methods infer future electricity consumption
from historical load patterns [13], [14]. Note - we use the
terms prediction and forecast interchangeably in this text.

In case such regularity is lacking, we observe for state-of-
the-art forecasting methods that they produce forecasts that
approximate the most recently observed value which results
in a time-series of predicted values that is nearly identical to
the time-series of observed values, but systematically delayed
one step in time, similar to a persistence model [15]. We
have labeled this the “Persistence Forecast Effect” (PFE) and
explain it in detail in the Problem Statement section. To the
best of our knowledge, this phenomenon has so far not been
described or analysed in the literature. The impact of the
PFE on applications varies between applications depending
on their tolerance to accommodate temporal displacement of
predictions. The PFE can jeopardise the functionality of such
smart applications that require precise timing of predictions
since the unnoticed PFE can result in overconfidence in pre-
dictions. For instance, battery charging/discharging scheduling
and load shifting are important strategies for peak shaving
[7], [12], and such strategies require precise forecasts with
no temporal flexibility. However, in the presence of the PFE,
forecasts are naı̈vely reproducing the current load, causing
batteries to be charged/discharged at a suboptimal time or tasks
to be incorrectly scheduled, ultimate resulting in potentially
exacerbated peaks, rather than shaving them; a behaviour also
observed by [16] for other kinds of delays in predictions of
peaks. The PFE is a risk to all prediction contexts that exhibit
volatile and uncertain load patterns, including small grids (also
called “weak grids”) [12]. Hence, it is quite likely to observe
the PFE in the predictions for such grids, which can negatively
affect energy suppliers’ decision-making for strategies with
limited temporal flexibility, such as dynamic pricing, tariffs
adjustment, supply-demand balancing, and network level peak
reduction. However, the state-of-the-art evaluation metrics
used in demand forecasting literature are not able to detect
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the PFE. To avoid overconfidence in prediction results, the
PFE should be taken into consideration regardless of the
aggregation level or building type, so that steps to mitigate
it can be taken; including reviewing the input feature set.
Otherwise, it can undermine the robustness of methodological
decisions made, and negatively affect the final applications
and intelligent energy management systems, which may lead
to bigger troubles in smart grid concepts adventitiously.

The main contributions of our work are:
i) Definition and description of the PFE are provided.

ii) Current evaluation metrics are reviewed relative to the
PFE.

iii) A novel method for detecting the PFE is proposed.
iv) Underlying causes of the PFE are highlighted.
v) The PFE is investigated for both single-step and multi-

step forecasts.
The remainder of the paper is structured as follows. In the

next section, we define and explain the PFE, followed by a
review of related literature. We then propose a method for
detecting the PFE and introduce the experimental setup. After
that, we present experimental results that illustrate the PFE and
its implications. This is followed by a discussion of how the
PFE manifests itself in multi-step forecasts. Then, we evaluate
the association between the irregular load pattern and the PFE
along with the importance of having historical energy data in
input set. Finally, we present our conclusions.

II. PROBLEM STATEMENT

In this section, we describe the PFE in single-step forecasts
and motivate its identification and evaluation. Further, we
explain the implications of the effect.

Electric load forecasting is a time-series forecasting prob-
lem. Time-series forecasting can be performed for single-step
or multi-step ahead. Single-step forecasts consists of prediction
the value of the next time step (yt+1) only, while multi-
step forecasts is the task of predicting a range of sequential
future values (yt+i, i = 1,2, . . . ,H, where H is the absolute
forecasting horizon). At present, in order to solve this prob-
lem, various prediction methods exploiting correlations and
similarities [13] are applied. These methods utilise a variety
of different “features” on which the values in the output
domain are assumed to depend (contingent). Most of the time,
these features include a certain number of historical data (past
observations of electricity consumption), for example in [9],
[11], [14]. More formally, we can describe historical electric
data as follows; given a time t, Et denotes the most recent
observed electricity consumption value and Et+1 refers to
the electricity consumption value to be predicted. Hence, the
historical load data can be expressed by Et−i, i = 0,1, . . . ,K,
where K is the number of data points.

Even though historical data from the output domain can be
a very powerful predictor of future values, they may lead to
the PFE. In this study, we describe a phenomenon of PFE
that can be observed when regularity in historical load data
among input features is sufficiently weak. In such a case,
predictions (Et+1) approximate the most recently observed
electricity demand value (Et ). An example from the dataset
in our case study is given in Fig. 1, showing observed values

Fig. 1. A comparison of PFE-affected predictions produced by a machine
learning method and predictions produced by a a naı̈ve persistence model
throughout a day. The error of the predictions affected by the PFE is shaded
in grey. The naı̈ve persistence model performs better than the machine learning
method: The absolute error of the machine learning method is 6.723 kWh,
while the error of the persistence model is lower at 6.526 kWh.

in blue and time-series predictions suffering from the PFE
in orange. The main characteristic is that the shape of the
predictions is almost identical to the observed values, except
that the output domain values are displaced by one time step
to the right (the future). In other words, the method returns
almost the same value with observed value as its prediction
(Et ≈ Et+1). Our succinct explanation for this in due to the
volatility and pattern irregularity in historical data, methods
cannot learn enough and instead, extrapolate from the most
recent electricity demand value because of the high correlation
between the consecutive data points in electricity load data.

Also shown in Fig. 1 is the output of a persistence model.
This is a well-known naı̈ve method that is mostly used as a
baseline method for testing the prediction ability of machine
learning algorithms [15], [17]. It simply returns the value of
the most recent observation (Et ) as a prediction outcome for
the next time step (Et+1), resulting in (Et+1 =Et ). Based on the
similarity between the predictions of the persistence model and
the predictions suffering from the bias we investigate in this
text, we have chosen the term “Persistence Forecast Effect”
to describe the effect. In this randomly chosen example, the
naı̈ve persistence model has a lower absolute error than the
LSTM RNN model.

Evaluation metrics assess the prediction error from a dis-
crepancy between the predicted and observed values. However,
the PFE might result in overconfidence in evaluation metric
results because the most popular evaluation metrics, e.g. Mean
Squared Error (MSE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE) are not capable to identify this effect by
themselves. Smart systems or applications built on top of
forecasts affected by the PFE will not perform as effectively
as they would with data that enables the developments of
models that surpass the naı̈ve persistence model. According to
[18], a 1% rise in the prediction error translates to a roughly
£10 million increase in annual operating costs for the United
Kingdom in 1984. Given the increased level of automation in
all parts of the economy, building these smart and automated
systems on top of predictions with an unnoticed PFE will
likely cost much higher today.

Evaluation metrics can also be used to provide an in-
between comparison of alternative prediction methods. How-
ever, besides being a sign of poor time-series prediction
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generally, the PFE is also a direct threat to the validity
of comparative studies that rank methods in-between. As
we will demonstrate in the Results section, the PFE can
result in inconsistent rankings or even rank reversal between
prediction methods. This in turn threatens the transferability of
findings from studies aiming to optimise forecasting methods
or compare forecasting methods for a certain type of problem.

III. RELATED WORKS

Time-series forecasts are defined by both timings as well
as amplitudes of series of events. Therefore, it is critically
significant to predict the timing of an event correctly along
with its amplitude. An error resulting from an event predicted
to happen too early or too late is called phase error [19], [20].
In [21], [22], authors effectively illustrated that the phase error,
together with bias and amplitude error, is one of the three main
components forming RMSE and MSE. As a consequence,
in order to achieve relatively better metric value, the phase
error should also be handled properly. In one line of work,
studies have focused on forecasting ramp events, referring to
sudden, significant fluctuations in time-series data within a
short period of time [20]. These aim to predict the time of
ramp events correctly alongside the accurate amplitude. More
recently, a growing interest has emerged in this topic in solar
(see [23]–[25] ) and wind (see [26]–[28]) power production
domains to guard from the negative impacts of ramp events
for greater safety, stability, and economics of power systems
and energy storage devices. Further, [17] proposes a novel
evaluation metric, Ramp Score, to evaluate the ability to
predict significant ramp events.

Furthermore, considering the phase error, the point-wise
metrics, such as MAPE, RMSE, and MSE, are claimed to
be inappropriate in time-series prediction evaluation [5], [16],
[17], [29]. Point-wise metrics simply compare the observed
and predicted values at each time step, and hence, they lead
to double penalty effect (DPE). The DPE refers to the case
in which point-wise metrics penalise temporally displaced
predictions twice: first, where the event actually should be,
and second, where the event is predicted to happen - even
if the size and the amplitude of an event are correctly pre-
dicted in principle. In order to avoid this effect, the general
recommendation is to tolerate and not penalise small and
discontinuous displacement of predictions in time. The authors
of [16] introduce an adjusted p-norm error measure that allows
for small and discontinuous displacement of predictions in
time. Basically, the main idea behind this method is to partly
drop the time dimension and provide temporal flexibility to
predictions during evaluation. Based on the test they run, they
find that the new metric they proposed is suitable and useful
for volatile and irregular data while the standard point-wise
metrics are adequate for smooth and regular data. Similarly,
alignment-based metrics such as Dynamic Time Warping,
Longest Common Sequence, Parameterised Forecast Error
Metric, and Move Split Merge are also proposed as evaluation
metrics for time-series predictions [5], [16]. Alignment-based
metrics mainly align the predictions with the actual values in
order to find the optimal match between them, hence they do
prevent the DPE. However, on the other hand, they do not

TABLE I
RECENT STUDIES OF HOUSEHOLD ELECTRICITY FORECASTS AND APPLIED

EVALUATION METRICS.
Study Evaluation Metric
[2] Corr., MAPE,

RMSE
[4] RMSE
[6], [35], [36] MAPE, RMSE
[8]–[10] MAPE
[15] S-MAPE
[11], [37], [38] MAE, MAPE,

RMSE
[39] MAE, RMSE,

N-RMSE

Study Evaluation Metric
[40] MAPE, MSE, R-MAPE
[41] MAE, RMSE
[42], [43] MAE
[44] Coef. of Variation
[45] MAE, MAPE, MSE
[46] Corr, RMSE
[47] MAE, Corr., RMSE,

MAPE, MaxAE, and SI
[48] Corr., RMSE

Coef. of Determination

have consideration of time dimension. That is to say, they do
not preserve the time order among data points and each data
point is handled as an independent prediction. As a result, they
are not suitable for the assessment of electricity consumption
prediction and other applications where the time dimension
and time order of the data points are inflexible [16].

Due to the uncertainty and volatility in household electricity
load and resulting challenges for point forecasts, probabilistic
forecasts are considered as a way of getting robust and reliable
predictions [29]. A comprehensive review of probabilistic
electric load forecasting for various types of buildings and
aggregation levels is provided in [30], [31]. Besides, more
recently, some studies including [32]–[34] provide new results
for probabilistic load forecasting specifically in the residential
domain.

Nevertheless, point forecasting methods and point-wise
metrics are still predominantly used in household level load
forecasting. A number of these works are reviewed from two
perspectives below. First, we list some recent studies using
point forecasting methods, together with their applied evalu-
ation metrics. We then present certain studies whose results
display some level of PFE based on our visual investigation.

Table I lists a number of recent studies, each of which
has a different strategy and approach to different variants of
household demand forecasting problem, as well as the point-
wise evaluation metrics they utilise to evaluate their prediction
accuracy. From Table I, it is evident that the most popular
metrics in household load forecasting are RMSE and MAPE,
applied by 16 and 15 studies, respectively. Furthermore, as
seen in Table I, it is a common practice to use multiple
evaluation metrics. However, it is of note that justification for
the choice of evaluation metrics is rarely given.

Regarding the presence of the PFE, in recently published
works, we carried out a visual inspection of plots of predic-
tions and actual observations in several peer-reviewed studies
and find substantial evidence for the PFE; for example in
Fig. 2 in [10], Fig. 8 in [9], Fig. 9 and 10 in [41], Fig.
8 in [42], Fig. 10 in [44], Fig. 8 in [45], Fig. 3 and 4 in
[49], and Fig. 4 and 5 in [50]. However, no comment is
made on systematic one step delay in predictions in these
studies. Furthermore, many studies, including [37], [43], [47],
do not provide plots comparing predicted and actual load.
Therefore, it is not possible to claim something definite about
the existence or absence of the PFE in such studies.
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IV. METHODOLOGY

In this section, we describe the novel method we propose for
detecting the presence of the PFE in single-step forecasts. We
then describe an empirical setup used to illustrate and evaluate
the PFE in a large-scale real-world dataset.

A. 1-Step-Shifting Method for PFE Detection

As previously mentioned, the PFE occurs mainly as a
result of a lack of regular pattern in data as well as a
high correlation between consecutive time-series data points.
When the effect arises, forecasting results approximate the
value of the previous data point, and hence, they follow the
actual energy demand one time step back as illustrated in
Fig.1. However, visual inspection alone is not always suffi-
ciently objective for practical and repeatable PFE detection.
Given that, a computational approach to detect the PFE is
required. Consequently, we propose the “1-Step-Shifting” (1-
SS) method. The central idea for the 1-SS method is the
recalculation of standard evaluation metrics after shifting the
predictions “one step back” in time (shift the predictions to
the past) or shifting the time-series of actual observations “one
step forward” in time (shift the actual data one time step right
to the future). Note that in this text, all the visualisations
and formulations utilise the former strategy which shifts the
predictions one step back in time to the past. The main idea
behind the 1-SS method is to show that shifting the predictions
one step back in time yields better evaluation metric results,
which proves the systematic one step delay in predictions.

The proposed 1-SS method contains four steps as follow:
Step 1: Calculate evaluation metrics for predictions/actual

data as usual.
Step 2: Apply shift of predictions one time step to the past

(or shift actual load data one step to the future).
Step 3: Recalculate the evaluation metrics for the shifted

predictions/actual load data.
Step 4: Compare the evaluation metric results of Step 1 and

Step 3. If 1-SS results in considerable improvements
in accuracy, then it can be claimed that the predictions
exhibit the PFE.

For instance, Fig. 2 illustrates the 1-SS method for predic-
tions affected by the PFE (Fig. 2a) and predictions not affected
by the PFE (Fig. 2b). In Fig. 2a, the curve of the predictions
matches the curve of the actual values much better than the
curve of the shifted predictions do. The opposite is the case in
Fig. 2b, where the difference between the shifted predictions
to the actual load data is smaller than that of the original
predictions.

This four-step 1-SS method is independent of a specific
evaluation metric. It is common practice (see Table I) and
recommended to apply multiple evaluation metrics [37] as
part of a prediction evaluation, as each metric has individual
advantages and disadvantages. In this work, therefore, we
apply the most popular evaluation metrics in the household
load forecasting literature: MAPE, RMSE, and Correlation co-
efficient. We advocate MAPE and RMSE as they complement
each other in many aspects and Correlation as it measures the
linear correlation (similarity) between two sets of variables. As

(a)

(b)

Fig. 2. Illustration of the 1-SS method on two predictions; (a) without the
PFE and (b) with the PFE.

a result, these three metrics, whose properties are summarised
in Table II, aid us to evaluate the PFE from as many as
different angels.

These three metrics are defined as;

MAPE = [1/n
n

∑
t=1

(|Actt −Predt |)/Actt ]×100 (1)

RMSE =

√
1/n

n

∑
t=1

(Actt −Predt)2 (2)

Corr =

[
n

∑
t=1

(Actt −Act)(Predt −Pred)

]
√√√√[

n

∑
t=1

(Actt −Act)2

][
n

∑
t=1

(Predt −Pred)2

] (3)

where Actt is the actual value and Predt is the forecast value
at time t and where Act and Pred refer to the mean of the
actual loads and the mean of the predictions respectively.

On the other hand, 1-SS modifies these formulas as follow;

MAPE∗ = [1/n
n

∑
t=1

(|Actt −Predt+1|)/Actt ]×100 (4)

RMSE∗ =

√
1/n

n

∑
t=1

(Actt −Predt+1)2 (5)

Corr∗ =

[
n

∑
t=1

(Actt −Act)(Predt+1−Pred)

]
√√√√[

n

∑
t=1

(Actt −Act)2

][
n

∑
t=1

(Predt+1−Pred)2

] (6)

Declaration 1. Given formulas 1-6, we define that for a
given household, predictions exhibit the PFE if MAPE∗ <
MAPE, RMSE∗ < RMSE, and Corr∗ > Corr. Conversely,
predictions do not suffer from the PFE, if MAPE∗ > MAPE,
RMSE∗ > RMSE, and Corr∗ <Corr. Any other combinations
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TABLE II
PROPERTIES OF MAPE, RMSE AND CORRELATION AS EVALUATION METRICS.

MAPE RMSE Correlation
Unit independent (percentage) Unit dependent (unit of data) Unit free (-1, 1)
Easy to interpret Not always easy to interpret Easy to interpret
It fails if some of the actual values Not affected if some of the actual values Measures the strength of the relationship
are equal to zero are equal to zero between the relative movements of two sets
Vulnerable to close-to-zero actual values Vulnerable to extremely high errors -
Penalises the errors equally More punishment for larger errors Reasonable metric to compare the shape and
(not squares the errors) (squares the errors) synchronicity of two set of variables
Depends systematically on the level of Depends on the magnitude of the error Depends on the direction of the correlation
the time-series (whether positive or negative)
Penalises the negative and positive errors equally Penalises the negative and positive errors equally -
The smaller MAPE, the better prediction The smaller RMSE, the better prediction The higher correlation, the better prediction.

Fig. 3. Load profile of household 8568209 over the train-validation-test split
duration.

other than these two, we consider as inconclusive and advise
further investigation via manual, visual inspection or in-depth
regularity analysis.

B. Experimental Setup

In order to illustrate the PFE and the use of 1-SS for
the PFE detection, we carry out an experiment with a large-
scale dataset and state-of-the-art machine learning methods.
We replicate relevant results from [8] who published prediction
results on the publicly available Smart Grid Smart City project
dataset (SGSC) [51] and used methods from the Keras library
together with the Theano back-end. The dataset they utilise
provides electricity consumption data for several houses and
they deploy multiple machine learning methods, which are
critically important for the purpose of this work. This experi-
ment also allows us to demonstrate that the PFE already exists
in literature.

1) Dataset: The SGSC dataset provides energy consump-
tion data for a large number of households in New South
Wales, Australia, and captures the variability of residential
schedules and activities. We replicate results from [8] and
identical to them, utilise a subset of 69 households from the
SGSC with 92 consecutive daily load profiles, from a 3-month
time span (01.06.2013 - 31.08.2013). This time period was
initially chosen as it includes complete half-hourly electric
load data for the 69 individual households. We apply the same
train-validation-test split of 67 days of data for training, 16
days for validation, and the remaining 9 days for testing.

The input features are identical across all 69 households and
include:
• Historical electricity load data for the past 2 time steps

(Et , Et−1).
• Day of week indicator (ranges from 0 to 6).
• Time of day indicator (ranges from 0 to 47).

TABLE III
HYPER-PARAMETER SETTINGS OF THE LSTM RNN AND BPNN

METHODS, REPLICATING [8].
Parameter Setting
Hidden Layers 2
Nodes on Each Layer 20
Epoch 150
Optimizer Adam
Learning Rate 0.001

Parameter Setting
Decay 0.0
Batch Size 32
Dropout Rate No Dropout
Loss Function MAE

• Weekend indicator (ranges from 0 to 1).
Identical to [8], we carry out data preparation as well: all the

input features are transformed to a standard scale (0, 1) inde-
pendently, which is crucial to reduce the impact of marginal
outliers. To do this, one-hot encoding is applied to time-of-
day, day-of-week inputs. Besides that, min-max normalisation
is performed for historical electricity data columns.

However, it is of note that for one of the 69 houses
(8568209) from the dataset, electricity consumption is approx-
imately zero for a substantial part of the dataset (potentially
because the property was vacant), including the entire time
span that defines the test set (see Fig. 3). The test set, thus, is
utterly dissimilar to the training set. In order to evaluate the
PFE for this household, a different train/test split would be
needed, which would be a deviation from [8]. For this reason,
we have excluded this house from the PFE evaluation.

2) Prediction Methods: In order to illustrate the PFE and its
implications, we apply two state-of-the-art machine learning
techniques, Long Short-Term Memory Recurrent Neural Net-
work (LSTM RNN) and Back-Propagation Neural Network
(BPNN), as applied in [8]. In this section, we introduce their
implemented architecture as well as critical hyper-parameters.
However, a detailed explanation of their working principles is
out of the scope of this study. Interested readers can find an
introduction to LSTM RNNs in [4], [8], [39] and to BPNNs
in [52], [53].

Both of these methods are built with the same architecture
and hyper-parameters, replicating [8]. The common architec-
ture and hyper-parameter settings of the methods are sum-
marised in Table III. The specific values for batch size, drop-
out rate, and loss function were not stated in [8]. Therefore, we
apply the default batch size of 32 and no drop-out. However,
the Keras framework does not provide a default choice of loss
function, and hence, we carried out a grid search and select
the function that resulted in the best reproduction of the results
from [8] – which is MAE.
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Fig. 4. Difference between default and shifted evaluation metrics with the 1-SS method. Bars are vertically aligned for each household ID. Results indicate
that only the predictions of households 8273230, 8342852, 8482121 are PFE-free.

3) Clustering Method: We carry out a clustering analysis
of daily load profiles of households in order to explain the
association between the presence of PFE and irregularity in
load patterns. The clustering provides a visual and numeric
comparison of the regularity level of households whose pre-
dictions are PFE-free and PFE-affected.

In an electricity demand prediction context, clustering al-
gorithms are generally employed to improve the prediction
accuracy [39], [40], [54]. In this text, however, we use clus-
tering for data analysis rather than prediction. The clustering
groups the 92 daily load profiles based on their resemblance
to one another. The number of clusters provides a measure for
the regularity level of data from a household on a day-by-day
basis based on hierarchical clustering in line with [8], [9].

Hierarchical clustering (see [55], [56] for details) is chosen,
as it I) requires only a few number of hyper-parameter selec-
tion, II) does not need a predetermined number of clusters,
and III) identifies outliers explicitly.

Clustering is an unsupervised learning method that groups
objects based on their relative similarity given some distance
metric [54]. In the current context, since the objects are not
a single data point but a sequential data array of 48 data
points for each day, correlation was chosen as the distance
metric. To calculate the distance between individual objects or
clusters, the average method is performed. The threshold for
assignment to the same cluster is set to corr = 0.75. In other
words, two daily electricity demand profiles are assigned to
the same cluster if their correlation coefficient is equal to or
greater than 0.75.

V. RESULTS

We first deploy LSTM RNN on the data of 68 residences
independently with identical architecture and hyper-parameters
and then, apply the 1-SS method to the predictions produced
by the LSTM RNN for 68 residences. The difference between
the default evaluation metrics (formulas 1 to 3) and their
shifted equivalents (formulas 4 to 6) are shown in Fig. 4.

Considering the difference between default and shifted eval-
uation metrics as given by the 1-SS method and Declaration 1,
the 68 households can be split into three groups:
• PFE-free: All three metrics worsen after 1-SS. This is the

case for household IDs: 8273230, 8342852, 8482121.

• Inconclusive: One or two metric(s) improve while another
worsens after 1-SS. This is the case only for household
ID: 8478501.

• PFE-affected: All three metrics improve after 1-SS. This
is the case for the remaining 64 houses, which is by far
the majority of households.

For MAPE and RMSE, a larger value corresponds to a worse
result, while the opposite is true for Correlation. For instance,
the 1-SS method indicates that the predictions of household
8342852 are not affected by the PFE, as values for MAPE
and RMSE worsen (error increases) from 38.705 and 0.227
to 46.295 and 0.550, respectively. Meanwhile, the Correlation
worsens (less alignment) from 0.941 to 0.643. On the other
hand, the predictions of household 8184653 are affected by
the PFE, as MAPE and RMSE improve (error decreases) to
20.150 and 0.107 from 38.724 and 0.252, respectively, and the
Correlation improves (better alignment) from 0.643 to 0.941.

Even though the 1-SS method is conceptually very simple,
it can detect the PFE in all but one of the cases (inconclusive).
The default evaluation metrics by themselves are not able
to identify such behaviour at all, which can result in mis-
placed confidence in predictions. Fig. 5 juxtaposes MAPE and
MAPE* values of 6 houses in three pairs of houses with PFE-
free and PFE-affected predictions. In each pair, the MAPE
values are very similar to one another (e.g. 25.357 and 24.815
for houses 8273230 and 8487285, respectively). According
to metric results, the prediction method performs relatively
similarly for the pairs 8273230 and 8487285, 8342852 and
8184653, and 8482121 and 8661542. However, when the 1-
SS method is applied, the evaluation metric values improve
for the households with PFE-affected predictions and degrade
for those not subject to the PFE – as shown by MAPE*
in Fig. 5. Even though the absolute overall prediction error
in each pair of households during the test interval is very
similar, for predictions exhibiting the PFE, this error is almost
exclusively determined by the cumulative difference of the
observed energy consumption between two time steps.

Another important risk resulting from PFE is for the in-
terpretation of evaluation metrics during comparison of pre-
diction methods. When using the standard evaluation met-



7

Fig. 5. Paired MAPE and MAPE* values of three PFE-free predictions
(8273230, 8342852, 8482121) and three PFE-affected predictions (8487285,
8184653, 8661542).

TABLE IV
EVALUATION OF REPEATED RUNS OF LSTM RNN AND BPNN FOR A

SELECTION OF HOUSES FROM THE DATASET.

House ID PFE Method MAPE1 MAPE2 MAPE3 MAPE4

8273230 Unaffected LSTM RNN 25.210 24.617 24.971 25.029
BPNN 31.084 29.507 32.054 29.876

8342852 Unaffected LSTM RNN 37.824 38.576 37.560 38.625
BPNN 63.641 68.311 66.885 65.307

8482121 Unaffected LSTM RNN 31.303 30.839 30.941 30.471
BPNN 39.858 40.926 41.360 40.082

8181075 Affected LSTM RNN 18.920 18.916 18.610 19.104
BPNN 19.206 18.610 19.778 18.888

8196621 Affected LSTM RNN 36.807 35.709 36.355 36.765
BPNN 35.174 36.523 36.624 34.440

11081920 Affected LSTM RNN 31.785 30.708 31.739 31.671
BPNN 31.532 30.275 32.569 30.476

rics to compare alternative methods, the PFE can result in
evaluation metrics that separate methods only poorly - or
even reversing the rank order between them. We illustrate
this with a comparison of LSTM RNN and BPNN methods
for six residential buildings, three of which have PFE-free
predictions and three have PFE-affected predictions. These
methods are partly stochastic and result in slightly varying
forecasts. We train both methods four times for each of these
buildings. The MAPE results are listed in Table IV. For
buildings with PFE-free predictions, LSTM RNN performs
consistently and significantly better than BPNN. However, for
households whose predictions are PFE-affected, the difference
between MAPE results is not significant and ranks between
LSTM RNN and BPNN are not stable.

A. The PFE in Multi-Step Forecasts

So far, we have only considered single-step forecasts. To
investigate the PFE in the context of multi-step forecasts, we
deploy LSTM RNN, with the same architecture and hyper-
parameters as above, for the same dataset. We perform one-
day-ahead prediction, yielding 48 predicted values for the
electricity consumption of the following 24 hours. To deal
with this task, we use a recursive mechanism that allows us to
use our single-step method, LSTM RNN, iteratively. The main
idea of the recursive mechanism is to deploy the same pre-
trained single-step method for each time point to be predicted.
Basically, the single-step model is used to predict the one
time point ahead first, and then, the output is fed into the
same single-step model to predict the subsequent time point.
This procedure is iteratively applied until the last value of the
desired multi-step forecasting sequence is predicted.

(a)

(b)

(c)

Fig. 6. Multi-step (day ahead) load predictions of PFE-free House 8482121
(a), and PFE-affected Houses 8487285 (b) and 8661542 (c).

Day ahead multi-step forecasts for three households are
presented by Fig. 6. The prediction method produces pre-
diction curves that show no temporal displacement, and the
predicted load pattern follows the actual load pattern closely
for the building (8482121) whose predictions are PFE-free
in a single-step case (Fig.6a). On the other hand, for the
buildings (8487285 and 8661542) whose predictions are PFE-
affected in single-step case, the method provides forecasts of
very poor alignment. The multi-step predictions are either i)
more or less flat lines with minimal fluctuations (Fig.6b),
or ii) prediction curves are full of arbitrary peaks/troughs
(Fig. 6c). In both cases, the forecasts are uncorrelated to the
actual load. The correlation coefficients between actual load
and multi-step forecasts are -0.123 and 0.026 for forecasts,
respectively. Therefore, considering the given definition of the
PFE and the dissimilarity between the actual load and multi-
step predictions, it does not seem possible to talk about the
temporal accuracy or the existence/absence of the PFE for such
predictions.

As a result, in any case, the 1-SS method as presented here
is not sufficient to detect the PFE in multi-step forecasts, which
is an area of further work. However, the 1-SS can be used to
show the absence of the PFE in multi-step forecasts anyway,
and can thus be used to give confidence in evaluation outcomes
to stakeholders.
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TABLE V
HIERARCHICAL CLUSTERING RESULTS FOR 68 RESIDENCES SORTED BY

THE NUMBER OF CLUSTERS.
House # of

ID Clus.
8342852 10
8273230 12
8482121 12
8804804 20
11462018 20
8478501 26
8466525 30
8680284 34
8334780 36
8557605 38
10692972 38
8291712 40
8198267 40
8419708 40
8181075 42
8687500 44
8196669 45

House # of
ID Clus.

8198319 45
8196659 45
8519102 46
8617151 46
8350006 46
8459427 47
10509861 50
8257054 50
8196671 53
8685932 54
8273592 54
8149711 54
9393680 56
8661542 57
8328122 57
8196621 57
8733828 58

House # of
ID Clus.

8347238 59
8504552 60
8376656 60
8655993 60
8198345 60
8184653 60
8145135 61
8326944 62
8147703 63
8351602 64
8673172 65
8211599 66
8566459 66

10595596 67
8156517 67
8451629 68
8176593 72

House # of
ID Clus.

8308588 74
8487461 75
8679346 75
8487285 76
8264534 77
8432046 77
8496980 77

10598990 77
8257034 77
9012348 80

11081920 81
10702066 84
8540084 84
8618165 86
8487297 87
8523058 88
8282282 91

B. Clustering Results

Results from hierarchical clustering are shown in Table V.
Here, houses are sorted by the number of clusters, with
fewer clusters indicating a greater similarity between the daily
energy consumption profiles over the 92 days of a specific
household. It is important to note that outlier daily demand
profiles, that do not have any similar profiles to be in the
same cluster with according to the correlation distance metric,
are each put in a separate cluster.

The clustering results show significant differences between
the regularity level of demand profiles of households. The most
regular household has only 10 clusters for the 92 daily load
profiles, while, the household that has the most variable load
profiles has 91 clusters; in other words only two daily load
profiles that were similar.

Among the results in Table V, the three houses that have
PFE-free predictions (8273230, 8342852, and 8482121) rank
first, showing that these have the most self-similar and regular
demand profiles throughout the 92 days among 68 households.
The considerable difference between the regularity level of the
daily load profiles of households 8273230 and 8487285, whose
MAPE and MAPE* values are compared above in Fig. 5, can
be seen in Fig. 7, which shows all 92 daily load profiles of
those buildings in Fig. 7a and Fig. 7b, respectively. These are
complemented by the dendrograms in Fig. 8 that visualise the
clustering results of the same houses.

VI. DISCUSSION

Given the strong within-household variability of the demand
profiles, where as many as 91 different clusters are found
for 92 days - it is not surprising that prediction methods
fail to provide robust predictions given such variable energy
consumption. If this is the case, it should be detected during
the prediction evaluation. Nevertheless, the evaluation methods
available to the community are not able to do this.

The 1-SS method provides a conceptually straightforward
method to detect the PFE in predictions. We note that although
the ranking in Table V explicitly reveals the relation between

(a)

(b)

Fig. 7. 92 Daily load profiles of PFE-free House 8273230 (a) and PFE-
affected House 8487285 (b).

(a)

(b)

Fig. 8. Dendrograms showing hierarchical clustering result for household
8273230 (a), with PFE-free predictions, and House 8487285 (b), with PFE-
affected predictions. Except for blue, each colour bunch represents a cluster
and blue lines represent outlier daily profiles.

the irregular pattern in data and the PFE, clustering cannot
be used as a tool to identify the PFE. This is because, first,
hierarchical clustering requires a choice of hyper-parameters
such as the threshold value (here: corr=0.75); and second,
clustering results rely on dataset features, such as dataset
length, granularity and the like. While the ranking of houses
is supposed to be independent of these hyper-parameters, the
absolute number of clusters is not.

Our empirical regularity analysis focused on the overall
variability of demand profiles. A detailed analysis of the
underlying reasons why predictions “fall back” on “the most
recent observation” is out of the scope of this text. However,
the auto-correlation analyses offer to make a progress in this
direction. The auto-correlation analysis evaluates the similarity
between observations from the same time-series variable as a
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(a) (b)

Fig. 9. Auto-correlation analyses of PFE-free House 8273230 (a) and PFE-
affected House 8487285 (b).

function of the delay between the observations. The distance
(delay) between observations is called lag. For example, in a
half-hourly dataset, lag1 refers to the observation 30 minutes
prior to the most recent one, and lag48 to the observation 24
hours earlier. Auto-correlation, thus, offers a way to measure
and understand similarity within a day and sequential days.
For instance, Fig. 9a shows significant auto-correlation values
at various lags throughout the day for a household whose
predictions are PFE-free. In particular, the correlation values
at lag1 (0.693) and lag48 (0.687) are almost equal to each
other, illustrating the similarity between the consecutive days.
In contrast, Fig. 9b shows the auto-correlation results for a
household with PFE-affected predictions. Here, the correlation
value at lag1 is by far higher than values at all the other lags.
In other words, in such a volatile dataset, the current value is
most correlated to the previous time step. Prediction methods,
thus, are consistent to forecast that the future will be “similar
to the current”.

The objective of our analysis was not to demonstrate that
the forecasting methods are “broken” in a previously unknown
way. Instead, we aim to guard against overconfidence in
prediction outcomes and to mitigate the risk of developing
forecast models on datasets that do not work as might be
expected. By applying the 1-SS, model developers have a
tool to detect the PFE in their predictions. When they do,
we recommend a review of the dataset they use and their fea-
tures. Developers should explore the availability of additional
features that are the predicted output is contingent on. In the
domain of residential energy demand, these might include the
features that determine why, when, and how electrical energy
is consumed in a building, including the lifestyle of occupants
and daily routines, power consumption of appliances, weather
data, and the like. Such augmented datasets hold the potential
to include the regularity that forecasting methods rely on and
contribute to the reduction of the prediction error.

Nonetheless, historical load data is still an important predic-
tor in the domain of residential load forecasting. In Table VI,
we compare accuracy of LSTM RNN for five randomly
selected houses with and without historical loads in the input
set. Similar to [14], we find that the use of historical data
brings substantial improvement in prediction accuracy. Given
that historical data is of such high value to prediction accuracy,
we propose the 1-SS evaluation method in order to identify
when a historical dataset provides insufficient regularity for
prediction methods to provide robust output.

We would like to close with a review of the PFE related

TABLE VI
ACCURACY COMPARISON WITH AND WITHOUT HISTORICAL DATA IN

INPUT SET.
House ID Historical Data MAPE RMSE Corr

in Input Set

8196671 No 66.988 0.233 0.320
Yes 28.727 0.122 0.635

8350006 No 35.446 0.204 0.571
Yes 21.296 0.145 0.751

8432046 No 77.413 0.671 0.466
Yes 63.266 0.477 0.768

8540084 No 135.099 0.318 0.365
Yes 78.493 0.226 0.662

9393680 No 172.943 0.527 0.403
Yes 100.083 0.467 0.557

to the phase error and DPE. The DPE arises from the use
of point-wise metrics during the evaluation of discontinuously
displaced predictions also known as phase error. The phase
error that the DPE is concerned with can occur at any point
in time and with varying time steps - backwards or forwards
- for all sorts of reasons. The solutions proposed for the DPE
work by dropping the time dimension during evaluation, and
are applicable to application areas that are tolerant to a dis-
placement of events in time. Not all applications provide this
temporal flexibility (such as peak shaving, storage scheduling,
and dynamic pricing). As a matter of fact, the PFE refers
to predictions systematically trailing the actual loads one step
behind in time since they are extrapolated from the most recent
load value used in the input set due to irregularity in data.
Dropping the time dimension cannot be a solution to PFE. This
is because if it was applicable for systematic and continuous
prediction displacement, the simplest method, the persistence
model introduced in Problem Statement, would always be the
most superior method.

VII. CONCLUSION

In this text, we start with the observation that evaluation
methods applied to time-series predictions, commonly used
for electric load forecasting, fail to detect model-degradation
when trained with highly irregular data. We also introduce
the PFE, referring to an effect of predictions systematically
following the actual load one step behind, which may be
detrimental to the final applications that have no tolerance to
temporal displacement. We then illustrate the risks associated
with this and to mitigate these risks, propose the 1-SS as a
PFE detection method. We investigate the use of the 1-SS for
single- and multi-step predictions. We finally investigate how
irregularity in data causes predictions to be affected by the
PFE.

We illustrate the PFE on a real-world dataset of 68 houses
by deploying advanced machine learning techniques. We repli-
cate the results of a recent, peer-reviewed study and show
that standard evaluation metrics are insufficient to detect the
PFE. According to the 1-SS results, only 3 of the houses
have PFE-free predictions, whereas predictions of 64 of them
are PFE-affected and the remaining household is inconclusive.
Finally, through analysis of similarity between-day and within-
day through hierarchical clustering and auto-correlation, we
make steps towards a more formal description of the PFE.
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As a consequence, the PFE has a strong potential to
endanger network security and resilience, as well as the
domestic economy. We recommend that model developers
apply the 1-SS method to examine the presence of the PFE
before deploying models in smart applications. Additionally,
in order to overcome the PFE and increase the robustness of
residential demand forecasts, we recommend augmenting the
input feature set with features that the prediction outputs might
be contingent on. As future work, first, we see the evaluation
of the PFE in other aspects of power systems and electricity
market studies e.g. price forecasting and solar/wind power
generation forecasting and second, we see the investigation
of whether the PFE can be used for improving the predictions
accuracy.
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