104 research outputs found

    Epigenetic Analysis in Human Neurons: Considerations for Disease Modeling in PD

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder next to Alzheimer’s disease. Most PD cases are considered to be sporadic and despite considerable scientific effort, the underlying cause(s) still remain(s) enigmatic. In particular, it is unknown to which extent epigenetic alterations contribute to the pathophysiology of this devastating disorder. This is partly due to the fact that appropriate PD models are not yet available. Moreover, epigenetic patterns and mechanisms are species specific and murine systems reflect only a few of the idiosyncrasies of human neurons. For several years now, patient-specific stem cell-derived neural and non-neural cells have been employed to overcome this limitation allowing the analysis and establishment of humanized disease models for PD. Thus, several studies tried to dissect epigenetic alterations such as aberrant DNA methylation or microRNA patterns using lund human mesencephalic cell lines or neurons derived from (patient-specific) induced pluripotent stem cells. These studies demonstrate that human neurons have the potential to be used as model systems for the study of epigenetic modifications in PD such as characterizing epigenetic changes, correlating epigenetic changes to gene expression alterations and hopefully using these insights for the development of novel therapeutics. However, more research is required to define the epigenetic (age-associated) landscape of human in vitro neurons and compare these to native neurons before they can be established as suitable models for epigenetic studies in PD. In this review, we summarize the knowledge about epigenetic studies performed on human neuronal PD models, and we discuss advantages and current limitations of these (stem cell-derived) neuronal models for the study of epigenetic alterations in PD

    Neuropsychological Features of Patients with Spinocerebellar Ataxia (SCA) Types 1, 2, 3, and 6

    Get PDF
    A subtype-specific impairment of cognitive functions in spinocerebellar ataxia (SCA) patients is still debated. Thirty-two SCA patients (SCA1, 6; SC2, 3; SCA3, 15; SCA6, 8) and 14 matched healthy controls underwent neuropsychological evaluation testing attention, executive functions, episodic and semantic memory, and motor coordination. Severity of ataxia was assessed with the Scale for the Assessment and Rating of Ataxia (SARA), nonataxia symptoms with the Inventory of Non-Ataxia Symptoms. Depressive symptoms were evaluated with the Beck Depression Inventory. The SARA scores of our SCA patients (range 1–19.5) indicated an overall moderate ataxia, most pronounced in SCA6 and SCA1. Mean number of nonataxia symptoms (range 0–2.2) were most distinct in SCA1 and nearly absent in SCA6. SCA1 performed poorer than controls in 33% of all cognitive test parameters, followed by SCA2, SCA3, and SCA6 patients (17%). SCA 1–3 patients presented mainly attentional and executive dysfunctions while semantic and episodic memory functions were preserved. Attentional and executive functions were partly correlated with ataxia severity and fine motor coordination. All patients exhibited mildly depressed mood. Motor and dominant hand functions were more predictive for depressed mood than cognitive measures or overall ataxia. Besides motor impairments in all patients, SCA patients with extracerebellar pathology (SCA 1–3) were characterized by poor frontal attentional and executive dysfunction while mild cognitive impairments in predominantly cerebellar SCA6 patients appeared to reflect mainly cerebellar dysfunction. Regarding the everyday relevance of symptoms, (dominant) motor hand functioning emerged as a marker for the patient’s mood

    Olfactory fMRI in Patients with Parkinson's Disease

    Get PDF
    Hyposmia is one of the early signs in idiopathic Parkinson's disease (PD). Olfactory stimuli were applied during fMRI scanning to show disease-related modulation of central nervous system structures and to advance our understanding of olfactory dysfunction in PD patients. All participants received either unpleasant stimuli that smelled like rotten eggs or pleasant ones that smelled like roses. Using a block design at a 1.5 T scanner we investigated a total of 8 PD patients (mean age 60 ± 10.9 years) and 13 age matched controls (mean age 58 ± 9.6 years). PD duration ranged from 1 to 9 years (mean 6.63 years); patients had an average “Unified Parkinson's Disease Rating Scale III” score of 23.25 (range, 6–46). Olfactory function was established using the “Sniffin’ Sticks” test battery. Patients tended to rate the stimuli presented during fMRI scans as less intense, but also as more pleasant than controls. fMRI results revealed differences between PD patients and controls which depended on the type of stimulation. While both pleasant and unpleasant stimulation was associated with lower activation in the amygdalo–hippocampal complex in patients compared to controls, increased activity in response to pleasant stimuli was observed in the striatum and the left inferior frontal gyrus. In contrast, unpleasant stimulation led to hypoactivation of the ventral striatum in patients (but not in controls) and did not enhance left inferior frontal activity. These results may partly reflect differences between PD patients and healthy controls in the processing of primary dimensions of odors, intensity, and valence

    The Alpha-Synuclein Gene (SNCA) is a Genomic Target of Methyl-CpG Binding Protein 2 (MeCP2)—Implications for Parkinson’s Disease and Rett Syndrome

    Get PDF
    Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson’s disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2

    A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice

    Get PDF
    BACKGROUND: Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. CONCLUSIONS/SIGNIFICANCE: Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches

    A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice

    Get PDF
    Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons.Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice.Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches

    No serological evidence for neuronal damage or reactive gliosis in neuro-COVID-19 patients with long-term persistent headache

    Get PDF
    Recent studies have indicated that long-term neurological sequelae after COVID-19 are not accompanied by an increase of canonical biomarkers of central nervous system injury in blood, but subgroup stratifications are lacking. This is a particular concern in chronic headache, which can be a leading symptom of Post-COVID diseases associated with neuronal damage such as vasculitis or autoimmune encephalitis. We here compared patients with mild Post-COVID-19 syndrome and persistent headache (persistent Post-COVID-19 headache) lasting longer than 12 weeks after the initial serological diagnosis, to patients with mild and severe COVID-19 and COVID-19-negative controls. Levels of neurofilament light chain and glial fibrillary astrocytic protein, i.e. markers of neuronal damage and reactive astrogliosis, were lower in blood from patients with persistent Post-COVID-19 headache compared to patients with severe COVID-19. Hence, our pilot serological study indicates that long-term Post-COVID-19 headache may not be a sign of underlying neuronal damage or neuroinflammation

    Phylogenetic relationships of species of Raymunida (Decapoda: Galatheidae) based on morphology and mitochondrial cytochrome oxidase sequences, with the recognition of four new species

    Get PDF
    19 pages.-- RECEIVED: 10 April 2000, ACCEPTED: 8 November 2000.The species of the genus Raymunida from the Pacific and Indian oceans are revised using morphological characters and the mitochondrial cytochrome oxidase subunit I sequences. Four new species are described (R. confundens, R. dextralis, R. erythrina, and R. insulata), and the status of R. bellior and R. elegantissima are revised. The species of Raymunida can be identified by subtle morphological characters, which match differences in mitochondrial nucleotide sequences. Therefore, the sequence divergences confirm the specific and phylogenetic value of some morphological characters (e.g., length of the mesial spine on the basal antennal segment, length of the walking legs). Furthermore, they confirm the importance of the color pattern as a diagnostic character. The widespread species (R. elegantissima), known from the Philippines to Fiji, shows minimal divergence between specimens from different localities (maximum of 3 nucleotide differences or 0.2% mean divergence). The phylogenetic reconstruction agreed with the monophyletic condition of Raymunida and its differentiation with respect to the genus Munida (in which Raymunida species had previously been included) and Agononida.Peer reviewe

    Aggregation-resistant alpha-synuclein tetramers are reduced in the blood of Parkinson's patients

    Get PDF
    Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.</p
    corecore