108 research outputs found
Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death
NoExtracts of Erythrina addisoniae are frequently used in the traditional medicine of Western Africa, but insufficient information about active compounds is available. From the stem bark of E. addisoniae, three (1, 2, 4) and three known (3, 5, 6) flavanones were isolated: addisoniaflavanones I and II, containing either a 2″,3″-epoxyprenyl moiety (1) or a 2″,3″-dihydroxyprenyl moiety (2) were shown to be highly toxic (MTT assay: EC50 values of 5.25 ± 0.7 and 8.5 ± 1.3 μM, respectively) to H4IIE hepatoma cells. The cytotoxic potential of the other isolated flavanones was weaker (range of EC50 values between 15 and >100 μM). Toxic effects of addisoniaflavanone I and II were detectable after 3 h (MTT assay). Both compounds induced an apoptotic cell death (caspase-3/7 activation, nuclear fragmentation) in the hepatoma cells and, at high concentrations, also necrosis (membrane disruption: ethidium bromide staining). Formation of DNA strand breaks was not detectable after incubation with these compounds (comet assay). In conclusion, the prenylated flavanones addisoniaflavanones I and II may be of interest for pharmacological purposes due to their high cytotoxic and pro-apoptotic potential against hepatoma cells
Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence
In this work, we present the Raman peak
positions of the quaternary pure selenide compound
Cu2ZnSnSe4 (CZTSe) and related secondary phases that
were grown and studied under the same conditions. A vast
discussion about the position of the X-ray diffraction
(XRD) reflections of these compounds is presented. It is
known that by using XRD only, CZTSe can be identified
but nothing can be said about the presence of some secondary
phases. Thin films of CZTSe, Cu2SnSe3, ZnSe,
SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed
their investigation by Raman spectroscopy (RS). Here we
present all the Raman spectra of these phases and discuss
the similarities with the spectra of CZTSe. The effective
analysis depth for the common back-scattering geometry
commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated
for different wavelength values. The observed
asymmetric PL band on a CZTSe film is compatible with
the presence of CZTSe single-phase and is discussed in the
scope of the fluctuating potentials’ model. The estimated
bandgap energy is close to the values obtained from
absorption measurements. In general, the phase identification
of CZTSe benefits from the contributions of RS and
PL along with the XRD discussion.info:eu-repo/semantics/publishedVersio
Phylogenetically and spatially close marine sponges harbour divergent bacterial communities
Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived
sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S.
spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic
resources in the marine realm.This work was financed by the Portuguese Foundation for Science and Technology (FCT - http://www.fct.pt) through the research project PTDC/MAR/101431/2008. CCPH has a PhD fellowship granted by FCT (Grant No. SFRH/BD/60873/2009). JRX’s research is funded by a FCT postdoctoral fellowship (grant no. SFRH/BPD/62946/2009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
On the interpretation of micro-PIXE measurements on a prototype microstructured reference material
In order to determine the beam spot size and scanning properties of ion microbeam systems, a novel reference material has been developed, consisting of permalloy (81% Ni, 19% Fe) strip patterns on silicon substrate. Due to the choice of substrate and pattern materials, these samples exhibit a high elemental contrast suitable for analysis with X-ray detection and ion scattering techniques. The microlithographic production scheme is briefly described. A prototype chip of this material was investigated with PIXE and RBS analysis in a scanning nuclear microprobe. It proved to be extremely useful in the routine to focus the ion microbeam and to determine its spot size. Due to the microscopic structure of these samples, a geometric dependence of matrix effects in the production of Si X-rays from the substrate material could be shown. Even dead-time effects in the counting electronics, showing up as an apparent thickness gradient, could be observed. Besides its primary role in microbeam diagnostics, this reference material can serve an educational role in developing the analyst's ability to correctly identify and interpret such artefacts
The thiol reactivity of the oxidation product of 3,5,7-trihydroxy-4H-chromen-4-one containing flavonoids
Flavonoids are assumed to have beneficial effects due to their antioxidant properties. The catechol moiety present in numerous flavonoids is oxidized during the antioxidative reaction yielding a quinone. Quinones are toxic due to their ability to react, e.g. with thiol groups. The 3,5,7-trihydroxy-4H-chromen-4-one group is another antioxidant pharmacophor in certain flavonoids. During the antioxidative reaction this group is also oxidized. The aim of the present study is to determine the thiol reactivity of this oxidized group. Galangin is a flavonoid that only contains the 3,5,7-trihydroxy-4H-chromen-4-one group as the antioxidant pharmacophor. Incubation of galangin with horseradish peroxidase/H(2)O(2) leads to an oxidation product which after addition of glutathione is instantaneously converted to an adduct. Based on these results it is expected that--similar to the catechol containing antioxidants--the 3,5,7-trihydroxy-4H-chromen-4-one containing antioxidants shift the damage provoked by oxidative stress from lipid peroxidation to thiol arylation. This should be considered in application of these types of antioxidants
- …