9 research outputs found

    Preparation and Investigation of Silver Nanoparticle–Antibody Bioconjugates for Electrochemical Immunoassay of Tick-Borne Encephalitis

    Get PDF
    A new simple electrochemical immunosensor approach for the determination of antibodies to tick-borne encephalitis virus (TBEV) in immunological products was developed and tested. The assay is performed by detecting the silver reduction signal in the bioconjugates with antibodies (Ab@AgNP). Here, signal is read by cathodic linear sweep voltammetry (CLSV) through the detection of silver chloride reduction on a gold–carbon composite electrode (GCCE). Covalent immobilization of the antigen on the electrode surface was performed after thiolation and glutarization of the GCCE. Specific attention has been paid to the selection of conditions for stabilizing both the silver nanoparticles and their Ab@AgNP. A simple flocculation test with NaCl was used to select the concentration of antibodies, and the additional stabilizer bovine serum albumin (BSA) was used for Ab@AgNP preparation. The antibodies to TBEV were quantified in the range from 50 IU·mL?1 to 1600 IU·mL?1, with a detection limit of 50 IU·mL?1. The coefficient of determination (r2) is 0.989. The electrochemical immunosensor was successfully applied to check the quality of immunological products containing IgG antibodies to TBEV. The present work paves the path for a novel method for monitoring TBEV in biological fluids

    A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl

    Get PDF
    Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits

    Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis

    Get PDF
    A highly effective way to improve prognosis of viral infectious diseases and to determine the outcome of infection is early, fast, simple, and efficient diagnosis of viral pathogens in biological fluids. Among a wide range of viral pathogens, Flaviviruses attract a special attention. Flavivirus genus includes more than 70 viruses, the most familiar being dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). Haemorrhagic and encephalitis diseases are the most common severe consequences of flaviviral infection. Currently, increasing attention is being paid to the development of electrochemical immunological methods for the determination of Flaviviruses. This review critically compares and evaluates recent research progress in electrochemical biosensing of DENV, ZIKV, and JEV without labelling. Specific attention is paid to comparison of detection strategies, electrode materials, and analytical characteristics. The potential of so far developed biosensors is discussed together with an outlook for further development in this field

    Preparation and Investigation of Silver Nanoparticle–Antibody Bioconjugates for Electrochemical Immunoassay of Tick-Borne Encephalitis

    No full text
    A new simple electrochemical immunosensor approach for the determination of antibodies to tick-borne encephalitis virus (TBEV) in immunological products was developed and tested. The assay is performed by detecting the silver reduction signal in the bioconjugates with antibodies (Ab@AgNP). Here, signal is read by cathodic linear sweep voltammetry (CLSV) through the detection of silver chloride reduction on a gold−carbon composite electrode (GCCE). Covalent immobilization of the antigen on the electrode surface was performed after thiolation and glutarization of the GCCE. Specific attention has been paid to the selection of conditions for stabilizing both the silver nanoparticles and their Ab@AgNP. A simple flocculation test with NaCl was used to select the concentration of antibodies, and the additional stabilizer bovine serum albumin (BSA) was used for Ab@AgNP preparation. The antibodies to TBEV were quantified in the range from 50 IU·mL−1 to 1600 IU·mL−1, with a detection limit of 50 IU·mL−1. The coefficient of determination (r2) is 0.989. The electrochemical immunosensor was successfully applied to check the quality of immunological products containing IgG antibodies to TBEV. The present work paves the path for a novel method for monitoring TBEV in biological fluids
    corecore