78 research outputs found

    Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia

    No full text
    International audienceNet ecosystem carbon exchange (NEE) were measured with eddy covariance method for two adjacent forests located at the southern boundary of European taiga in Russia in 1999?2004. The two spruce forests shared similar vegetation composition but differed in soil conditions. The wet spruce forest (WSF) possessed a thick peat layer (60 cm) with a high water table seasonally close to or above the soil surface. The dry spruce forest (DSF) had a relatively thin organic layer (5 cm) with a deep water table (>60 cm). The measured NEE fluxes (2000 and ?1440 kg C ha?1 yr?1 for WSF and DSF, respectively) indicated that WSF was a source while DSF a sink of atmospheric carbon dioxide during the experimental years. A process-based model, Forest-DNDC, was employed in the study to interpret the observations. The modeled NEE fluxes were 1800 and ?2200 kg C ha?1 yr?1 for WSF and DSF, respectively, which were comparable with the observations. The modeled data indicated that WSF and DSF had similar rates of photosynthesis and plant autotrophic respiration but differed in soil heterotrophic respiration. The simulations resulted in a hypothesis that the water table fluctuation at WSF could play a key role in determining the negative C balance in the ecosystem. A sensitivity test was conducted by running Forest-DNDC with varied water table scenarios for WSF. The results proved that the NEE fluxes from WSF were highly sensitive to the water table depth. When the water table dropped, the length of flooding season became shorter and more organic matter in the soil profile suffered from rapid decomposition that converted the ecosystem into a source atmospheric C. The conclusion from this modeling study could be applicable for a wide range of wetland and forest ecosystems that have accumulated soil organic C while face hydrological changes under certain climatic or land-use change scenarios

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Full text link
    The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

    Full text link
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible

    Carbon balance of a southern taiga spruce stand in European Russia

    No full text
    We present results from nearly three years of net ecosystem flux. measurements above a boreal spruce stand growing in European Russia. Fluxes were measured by eddy covariance using conventional techniques. In all years examined (1998-2000), the forest was a significant source of carbon to the atmosphere. However, the magnitude of this inferred source depended upon assumptions regarding the degree of "flux loss" under conditions of low turbulence, such as typically occur at night. When corrections were not made, the forest was calculated to be only a modest source of C to the atmosphere (3-5 mol C m(-2) yr(-1)). However, when the corrections were included, the apparent source was much larger (20-30 mol C m(-2) yr(-1)). Using a simple model to describe the temperature dependencies of ecosystem respiration on air and soil temperatures, about 80% of the night-time flux was inferred to be from soil respiration, with the remainder being attributable to foliage, branches and holes. We used reasonable assumptions to estimate the rate of ecosystem respiration during the day, allowing an estimation of canopy photosynthetic rates and hence the annual Gross Primary Productivity of the ecosystem. For the two full years examined (1999 and 2000), this was estimated at 122 and 130 mol C m(-2) yr(-1), respectively. This value is similar to estimates for boreal forests in Scandinavia, but substantially higher than has been reported for Canadian or Siberian boreal forests. There was a clear tendency for canopy photosynthetic rates to increase with both light and temperature, but the slope of the temperature response of photosynthesis was less steep that that of ecosystem respiration. Thus, on most warm days in summer the forest was a substantial source of carbon to the atmosphere; with the forest usually being a net sink only on high insolation days where the average daily air temperatures were below about 18 degreesC. These data, along with other studies on the current balance of boreal ecosystems, suggests that at the current time many boreal forests might be releasing substantial amounts of carbon dioxide to the atmosphere. This observed temperature sensitivity of this ecosystem suggests that this might be a consequence of substantially higher than average temperatures over recent years
    • …
    corecore