8 research outputs found

    MLVA polymorphism of Salmonella enterica subspecies isolated from humans, animals, and food in Cambodia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>(<it>S</it>.) <it>enterica </it>is the main cause of salmonellosis in humans and animals. The epidemiology of this infection involves large geographical distances, and strains related to an episode of salmonellosis therefore need to be reliably discriminated. Due to the limitations of serotyping, molecular genotyping methods have been developed, including multiple loci variable number of tandem repeats (VNTR) analysis (MLVA). In our study, 11 variable number tandem-repeats markers were selected from the <it>S. enterica </it>Typhimurium LT2 genome to evaluate the genetic diversity of 206 <it>S. enterica </it>strains collected in Cambodia between 2001 and 2007.</p> <p>Findings</p> <p>Thirty one serovars were identified from three sources: humans, animals and food. The markers were able to discriminate all strains from 2 to 17 alleles. Using the genotype phylogeny repartition, MLVA distinguished 107 genotypes clustered into two main groups: <it>S. enterica </it>Typhi and other serovars. Four serovars (Derby, Schwarzengrund, Stanley, and Weltevreden) were dispersed in 2 to 5 phylogenic branches. Allelic variations within <it>S. enterica </it>serovars was represented using the minimum spanning tree. For several genotypes, we identified clonal complexes within the serovars. This finding supports the notion of endemo-epidemic diffusion within animals, food, or humans. Furthermore, a clonal transmission from one source to another was reported. Four markers (STTR3, STTR5, STTR8, and Sal20) presented a high diversity index (DI > 0.80).</p> <p>Conclusions</p> <p>In summary, MLVA can be used in the typing and genetic profiling of a large diversity of <it>S. enterica </it>serovars, as well as determining the epidemiological relationships of the strains with the geography of the area.</p

    Setting a baseline for global urban virome surveillance in sewage

    Get PDF
    The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective

    Consumption and exchange in Early Modern Cambodia: NAA of brown-glaze stoneware from Longvek, 15th-17th centuries

    Get PDF
    An evaluation of the geochemical characteristics of 102 storage jar sherds by k0-neutron activation analysis (k0-NAA) from archaeological contexts in Cambodia and reference samples from stoneware production centres in Thailand provides a new perspective on regional and global trade in mainland Southeast Asia. Identification of seven geochemical groups enables distinctions between production centres, and articulation of their role in trade between northern and central Thailand, South China and Cambodia. Storage jars from Thailand and South China are known in archaeological contexts worldwide because of their durability and intrinsic functional and cultural values. Evidenced by a novel application of k0-NAA, analogous stoneware sherds at Longvek connect the Cambodian capital to a global trading network. Additional proof of ceramics from an undocumented Cambodian kiln demonstrates the gradual and complex transition between the Angkorian past and the Early Modern period

    Small mammals at the edge of deforestation in Cambodia: Transient community dynamics and potential pathways to pathogen emergence

    Get PDF
    Conversion of forest to agricultural land results in rapid and profound changes in ecosystems and biodiversity loss and increases the risk of pathogen emergence. However, insights into the underlying ecological processes linking deforestation and pathogen spillover are required to anticipate and mitigate new pathogen spillovers. Here, we studied small mammal communities and zoonotic pathogens in nine sites in Cambodia where the spatiotemporal deforestation edge was represented by three zones—forest, disturbed, and cleared—within each site. Complete turnover of the small mammal community and species overlap in disturbed forest may provide opportunities for spillover on the spatiotemporal front of forest disturbance. Concurrently, boom-and-bust dynamics of synanthropic species in agricultural landscapes may support the amplification of pathogens in proximity to human settlements. This combination of spillover and amplification may be a key mechanism involved in deforestation-induced pathogen spillovers, highlighting the global health threats of encroaching into natural areas

    Setting a baseline for global urban virome surveillance in sewage

    No full text
    The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective

    Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance

    Get PDF
    Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention
    corecore