5 research outputs found

    Climate trends and extremes in the Indus River Basin, Pakistan: implications for agricultural production

    Get PDF
    ABSTRACT: Historical and future projected changes in climatic patterns over the largest irrigated basin in the world, the Indus River Basin (IRB), threaten agricultural production and food security in Pakistan, in particular for vulnerable farming communities. To build a more detailed understanding of the impacts of climate change on agricultures in the IRB, the present study analyzes (1) observed trends in average temperature, precipitation and related extreme indicators, as well as seasonal shifts over a recent historical period (1997-2016); and (2) statistically downscaled future projections (up to 2100) from a set of climate models in conjunction with crop-specific information for the four main crops of the IRB: wheat, cotton, rice and sugarcane. Key findings show an increasing trend of about over 0.1ºC/year in observed minimum temperature across the study area over the historical period, but no significant trend in maximum temperature. Historical precipitation shows a positive annual increase driven mainly by changes in August and September. Future projections highlight continued warming resulting in critical heat thresholds for the four crops analyzed being increasingly exceeded into the future, in particular in the Kharif season. Concurrently, inter-annual rainfall variability is projected to increase up to 10-20% by the end of the 21st century, augmenting uncertainty of water availability in the basin. These findings provide insight into the nature of recent climatic shifts in the IRB and emphasize the importance of using climate impact assessments to develop targeted investments and efficient adaptation measures to ensure resilience of agriculture in Pakistan into the futur

    Comparison of mineral dust layers vertical structures modeled with CHIMERE-DUST and observed with the CALIOP lidar

    No full text
    International audienceThe final budget of dust remaining in the atmosphere or deposited on the surface depends directly on the emissions, boundary layer turbulence, stability in the troposphere, and clouds properties. The modeling of these processes remains uncertain and mineral dust long-range transport constitutes a major unknown. To improve this transport, it is crucial to improve modeling of altitudes and thicknesses of mineral dust layers. The spaceborne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) collects new information about the aerosol vertical distribution. Here we diagnose the lidar profile from the outputs of the transport model CHIMERE-DUST and we compare those with their observed counterparts. During the periods June to September 2006 and January to March 2007, the occurrences and structures of dust layers are estimated from the observed and modeled lidar signals. Accounting for the daytime and nighttime periods, the seasonal variability, and CALIPSO flight tracks, it is shown that the presence/absence of dust is correctly reproduced by the model in 70% of the 170,000 vertical profiles studied. The mineral dust horizontal distribution is quite correctly reproduced by the model, while the vertical one shows a vertical overspread which is more pronounced during winter (+100% compared to observations) than summer (+50%). The maximum value of the modeled lidar signal is underestimated with respect to the measured one by typically 30%. Multilayered dust situations are more frequent in the observations (30% of the total data set) than in the model (10%). Despite these errors, the model is able to catch the seasonal variations of the dust layers: the increases of the dust load and of the dust altitudes during summer and the northward shift of the maximum dust occurrence

    A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models

    No full text
    International audienceThe quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete understanding of the role of the vertical distribution of aerosols and clouds. This work aims at reducing the uncertainty of aerosol top-of-the-atmosphere (TOA) forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosol species and clouds. We propose a method to quantify the contribution of different parts of the atmospheric column to the TOA forcing as well as to evaluate the contribution to model differences that is exclusively due to different spatial distributions of aerosols and clouds. We investigate the contribution of aerosol above, below and in clouds by using added diagnostics in the aerosol-climate model LMDz. We also compute the difference between the TOA forcing of the ensemble of the aerosols and the sum of the forcings from individual species in clear sky. This difference is found to be moderate for the global average (14 %) but can reach high values regionally (up to 100 %). Nonlinear effects are even more important when superposing aerosols and clouds. Four forcing computations are performed: one where the full aerosol 3-D distribution is used, and then three where aerosols are confined to regions above, inside and below clouds, respectively. We find that the TOA forcing of aerosols depends crucially on the presence of clouds and on their position relative to that of the aerosol, in particular for black carbon (BC). We observe a strong enhancement of the TOA forcing of BC above clouds, attenuation for BC below clouds, and a moderate enhancement when BC is found within clouds. BC above clouds accounts for only about 30 % of the total BC optical depth but for 55 % of the forcing, while forcing efficiency increases by a factor of 7.5 when passing from below to above clouds. The different behaviour of forcing nonlinearities for these three components of the atmospheric column encouraged us to develop the method for application to inter-model variability studies by reading 3-D aerosol and cloud fields from different general circulation models (GCMs) into the same model. We apply the method to the comparison of forcing due to the aerosols and clouds distributions of the general circulation models LMDz and SPRINTARS. The different amount of BC above but also within clouds is revealed to play a major role on the differences of cloudy-sky forcings between the two models, which can exceed 100% regionally

    Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100

    Get PDF
    International audienceGlobal aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at −0.15 W m−2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m−2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with −0.34 and −0.28 W m−2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between −12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed −3 W m−2
    corecore