140 research outputs found

    Transgenic Rescue of the LARGEmyd Mouse: A LARGE Therapeutic Window?

    Get PDF
    LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20–100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window

    Congenital disorders of glycosylation presenting as epileptic encephalopathy with migrating partial seizures in infancy

    Get PDF
    Aim: Epilepsy is commonly observed in congenital disorders of glycosylation (CDG), but no distinctive electroclinical pattern has been recognized. We aimed at identifying a characteristic clinical presentation that might help targeted diagnostic work-up. Method: Based on the initial observation of an index case with CDG and migrating partial seizures, we evaluated 16 additional children with CDG and analysed their clinical course, biochemical, genetic, electrographic, and imaging findings. Results: Four of 17 consecutively observed children with CDG (three females, one male) were first referred between the first and fourth month of life, after early onset of migrating partial seizures. All four patients manifested developmental delay, microcephaly, and multi-organ involvement. Magnetic resonance imaging disclosed cerebral and cerebellar atrophy. Isoelectrofocusing of transferrin, enzymatic studies, and lipid-linked oligosaccharide analysis indicated CDG-I. Genetic testing demonstrated either homozygous or compound heterozygous variants involving the ALG3 gene in patients 1 and 3, the RFT1 gene in patient 2, and the ALG1 gene in patient 4. At last follow-up, patients 1 and 2 were 5 and 31/2 years old. Patients 3 and 4 had died due to respiratory failure during pneumonia and refractory status epilepticus respectively. Interpretation: Children with migrating partial seizures and concomitant multisystem involvement should be investigated for CDG

    GGPS1-associated muscular dystrophy with and without hearing loss

    Get PDF
    Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy

    Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations

    Get PDF
    An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed
    • 

    corecore