698 research outputs found

    Multiphoton ionization and multiphoton resonances in the tunneling regime

    Get PDF
    The rate of ionization of an atom of helium, argon, or hydrogen exposed to an intense monochromatic laser field and the quasienergy spectrum of their dressed states are studied for values of the Keldysh parameter between 1 and 0.6 and wavelengths between 390 and 1300 nm. The calculations are carried out within the non-Hermitian Floquet theory. Resonances with intermediate excited states significantly affect ionization from the dressed ground state at all the intensities and all the wavelengths considered. The dressed excited states responsible for these structures are large-α0 states akin to the Kramers-Henneberger states of the high-frequency Floquet theory. Within the single-active-electron approximation, these large-α0 states become species independent at sufficiently high intensity or sufficiently long wavelength. Apart for the resonance structures arising from multiphoton coupling with excited states, the ab initio Floquet ionization rate is in excellent agreement with the predictions of two different calculations in the strong field approximation, one based on a length-gauge formulation of this approximation and one based on a velocity-gauge formulation. The calculations also confirm the validity of the ω2 expansion as an alternative to the strong field approximation for taking into account the nonadiabaticity of the ionization process in intense low-frequency laser fields

    Safety and efficacy of dimethyl fumarate in ALS: randomised controlled study

    Get PDF
    Objective Neuroinflammation is an important pathogenic mechanism in amyotrophic lateral sclerosis (ALS), with regulatory T cells (Tregs) mediating a slower rate of disease progression. Dimethyl fumarate enhances Treg levels and suppresses pro-inflammatory T cells. The present study assessed the safety and efficacy of dimethyl fumarate in ALS. Methods Phase-2, double-blind, placebo-controlled randomised clinical trial recruited participants from May 1, 2018 to September 25, 2019, across six Australian sites. Participants were randomised (2:1 ratio) to dimethyl fumarate (480 mg/day) or matching placebo, completing visits at screening, baseline, weeks 12, 24 and 36. The primary efficacy endpoint was a change in Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) at week 36. Secondary outcome measures included survival, neurophysiological index (NI), respiratory function, urinary neurotrophin-receptor p75 and quality of life. Results A total of 107 participants were randomised to dimethyl fumarate (n = 72) or placebo (n = 35). ALSFRS-R score was not significantly different at week 36 (−1.12 [−3.75 to 1.52, p = 0.41]). Dimethyl fumarate was associated with a reduced NI decline week 36 (differences in the least-squares mean: (0.84 [−0.51 to 2.22, p = 0.22]). There were no significant differences in other secondary outcome measures. Safety profiles were comparable between groups. Interpretation Dimethyl fumarate, in combination with riluzole, was safe and well-tolerated in ALS. There was no significant improvement in the primary endpoint. The trial provides class I evidence for safety and lack of efficacy of dimethyl fumarate in ALS

    Dissecting the Mechanisms Underlying Short-Interval Intracortical Inhibition Using Exercise

    Get PDF
    Recently, 2 physiologically distinct phases of short-interval intracortical inhibition (SICI) have been identified, a larger phase at interstimulus interval (ISI) 3 ms and a smaller phase at ISI 1 ms. While the former is mediated by synaptic processes, the mechanisms underlying the first phase of SICI remain a matter of debate. Separately, it is known that fatiguing hand exercise reduces SICI, a measure of cortical excitability. Consequently, the present study assessed effects of fatiguing hand exercise on the 2 SICI phases, using threshold tracking transcranial magnetic stimulation techniques, to yield further information on underlying mechanisms. Studies were undertaken on 22 subjects, with SICI assessed at baseline, after each voluntary contraction (VC) period of 120 s and 5, 10, and 20 min after last VC, with responses recorded over abductor pollicis brevis. Exercise resulted in significant reduction of SICI at ISI 1 ms (SICIbaseline 9.5 ± 2.7%; SICIMAXIMUM REDUCTION 2.5 ± 2.5%, P < 0.05) and 3 ms (SICIbaseline 16.8 ± 1.7%; SICIMAXIMUM REDUCTION 11.6 ± 2.1%, P < 0.05), with the time course of reduction being different for the 2 phases. Taken together, findings from the present study suggest that synaptic processes were the predominant mechanism underlying the different phases of SICI

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS.   Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM.   Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices.   Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy

    Phase 2 randomized placebo controlled double blind study to assess the efficacy and safety of tecfidera in patients with amyotrophic lateral sclerosis (TEALS Study)

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disorder of the human motor system. Neuroinflammation appears to be an important modulator of disease progression in ALS. Specifically, reduction of regulatory T cell (Treg) levels, along with an increase in pro-inflammatory effector T cells, macrophage activation and upregulation of co-stimulatory pathways have all been associated with a rapid disease course in ALS. Autologous infusion of expanded Tregs into sporadic ALS patients, resulted in greater suppressive function, slowing of disease progression and stabilization of respiratory function. Tecfidera (dimethyl fumarate) increases the ratio of anti-inflammatory (Treg) to proinflammatory T-cells in patients with relapsing remitting multiple sclerosis and rebalances the regulatory: inflammatory axis towards a neuroprotective phenotype. Consequently, the aim of this study was to assess the efficacy, safety, and tolerability of Tecfidera in sporadic ALS. Methods: The study is an investigator led Phase 2 multi-center, randomized, placebo controlled, double blind clinical trial assessing the efficacy and safety of Tecfidera in patients with sporadic ALS. The study duration is 40 weeks, with a 36-week study period and end of study visit occurring at 40 weeks or at early termination/withdrawal from study. The TEALS study has been registered with the Australian and New Zealand Clinical Trials registry (ANZCTR) under the trials registration number ACTRN12618000534280 and has been approved by the Human Research Ethics Committee and Research Governance Office at the lead site (Westmead Hospital) with the ethics number HREC/17/WMEAD/353. The participating sites have obtained site specific ethics and governance approvals from the local institution. Results: The primary endpoint is slowing of disease progression as reflected by the differences in the ALS Functional Rating Score-Revised (ALSFRS-R) score at Week 36. The secondary endpoints will include effects in survival, lower motor neuron function, respiratory function, quality of life and safety. Conclusion: This Phase 2 multi-center, randomized, placebo controlled, double blind clinical trial will provide evidence of efficacy and safety of Tecfidera in sporadic ALS

    Multiple Components of the VHL Tumor Suppressor Complex Are Frequently Affected by DNA Copy Number Loss in Pheochromocytoma

    Get PDF
    Pheochromocytomas (PCC) are rare tumors that arise in chromaffin tissue of the adrenal gland. PCC are frequently inherited through predisposing mutations in genes such as the von Hippel-Lindau (VHL) tumor suppressor. VHL is part of the VHL elongin BC protein complex that also includes CUL2/5, TCEB1, TCEB2, and RBX1; in normoxic conditions this complex targets hypoxia-inducible factor 1 alpha (HIF1A) for degradation, thus preventing a hypoxic response. VHL inactivation by genetic mechanisms, such as mutation and loss of heterozygosity, inhibits HIF1A degradation, even in the presence of oxygen, and induces a pseudohypoxic response. However, the described <10% VHL mutation rate cannot account for the high frequency of hypoxic response observed. Indeed, little is known about genetic mechanisms disrupting other complex component genes. Here, we show that, in a panel of 171 PCC tumors, 59.6% harbored gene copy number loss (CNL) of at least one complex component. CNL significantly reduced gene expression and was associated with enrichment of gene targets controlled by HIF1. Interestingly, we show that VHL-related renal clear cell carcinoma harbored disruption of VHL alone. Our results indicate that VHL elongin BC protein complex components other than VHL could be important for PCC tumorigenesis and merit further investigation

    Dysfunction of axonal membrane conductances in adolescents and young adults with spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy is distinct among neurodegenerative conditions of the motor neuron, with onset in developing and maturing patients. Furthermore, the rate of degeneration appears to slow over time, at least in the milder forms. To investigate disease pathophysiology and potential adaptations, the present study utilized axonal excitability studies to provide insights into axonal biophysical properties and explored correlation with clinical severity. Multiple excitability indices (stimulus–response curve, strength–duration time constant, threshold electrotonus, current–threshold relationship and recovery cycle) were investigated in 25 genetically characterized adolescent and adult patients with spinal muscular atrophy, stimulating the median motor nerve at the wrist. Results were compared with 50 age-matched controls. The Medical Research Council sum score and Spinal Muscular Atrophy Functional Rating Scale were used to define the strength and motor functional status of patients with spinal muscular atrophy. In patients with spinal muscular atrophy, there were reductions in compound muscle action potential amplitude (P < 0.0005) associated with reduction in stimulus response slope (P < 0.0005), confirming significant axonal loss. In the patients with mild or ambulatory spinal muscular atrophy, there was reduction of peak amplitude without alteration in axonal excitability; in contrast, in the non-ambulatory or severe spinal muscular atrophy cohort prominent changes in axonal function were apparent. Specifically, there were steep changes in the early phase of hyperpolarization in threshold electrotonus (P < 0.0005) that correlated with clinical severity. Additionally, there were greater changes in depolarizing threshold electrotonus (P < 0.0005) and prolongation of the strength-duration time constant (P = 0.001). Mathematical modelling of the excitability changes obtained in patients with severe spinal muscular atrophy supported a mixed pathology comprising features of axonal degeneration and regeneration. The present study has provided novel insight into the pathophysiology of spinal muscular atrophy, with identification of functional abnormalities involving axonal K+ and Na+ conductances and alterations in passive membrane properties, the latter linked to the process of neurodegeneration

    Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke

    Get PDF
    Transcranial magnetic stimulation (TMS) is an accessible, non-invasive technique to study cortical function in vivo. TMS studies have provided important pathophysiological insights across a range of neurodegenerative disorders and enhanced our understanding of brain reorganisation after stroke. In neurodegenerative disease, TMS has provided novel insights into the function of cortical output cells and the related intracortical interneuronal networks. Characterisation of cortical hyperexcitability in amyotrophic lateral sclerosis and altered motor cortical function in frontotemporal dementia, demonstration of cholinergic deficits in Alzheimer's disease and Parkinson's disease are key examples where TMS has led to advances in understanding of disease pathophysiology and potential mechanisms of propagation, with the potential for diagnostic applications. In stroke, TMS methodology has facilitated the understanding of cortical reorganisation that underlie functional recovery. These insights are critical to the development of effective and targeted rehabilitation strategies in stroke. The present review will provide an overview of cortical function measures obtained using TMS and how such measures may provide insight into brain function. Through an improved understanding of cortical function across a range of neurodegenerative disorders, and identification of changes in neural structure and function associated with stroke that underlie clinical recovery, more targeted therapeutic approaches may now be developed in an evolving era of precision medicine

    Differentiating lower motor neuron syndromes

    Get PDF
    Lower motor neuron (LMN) syndromes typically present with muscle wasting and weakness and may arise from pathology affecting the distal motor nerve up to the level of the anterior horn cell. A variety of hereditary causes are recognised, including spinal muscular atrophy, distal hereditary motor neuropathy and LMN variants of familial motor neuron disease. Recent genetic advances have resulted in the identification of a variety of disease-causing mutations. Immune-mediated disorders, including multifocal motor neuropathy and variants of chronic inflammatory demyelinating polyneuropathy, account for a proportion of LMN presentations and are important to recognise, as effective treatments are available. The present review will outline the spectrum of LMN syndromes that may develop in adulthood and provide a framework for the clinician assessing a patient presenting with predominantly LMN features

    Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.

    Get PDF
    Abstract OBJECTIVE: We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination. METHODS: We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients. RESULTS: The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077). CONCLUSION: Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation
    corecore