

Journal of Neurology, Neurosurgery & Psychiatry

Interrogating cortical function with transcranial magnetic stimulation: Insights from neurodegenerative disease and stroke

Journal:	Journal of Neurology, Neurosurgery, and Psychiatry
Manuscript ID	jnnp-2017-317371.R3
Article Type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Agarwal, Smriti; University of Sydney Brain and Mind Research Institute Koch, Giacomo; Fondazione Santa Lucia IRCCS Hillis, A; Johns Hopkins Hospital Huynh, William; Brain and Mind Centre, ; Prince of Wales Clinical School, Ward, Nick; UCL Institute of Neurology, Sobell Department of Motor Neuroscience Vucic, Steve; The Brain Dynamics Centre, Westmead Millennium Institute; Sydney Medical School, University of Sydney Kiernan, Matthew C.; Prince of Wales Hospital, Institute of Neurological Sciences
Keywords:	MAGNETIC STIMULATION, STROKE, MOTOR NEURON DISEASE, DEMENTIA, PARKINSON'S DISEASE
Specialty :	Other

SCHOLARONE[™] Manuscripts

https://mc.manuscriptcentral.com/jnnp

2		
3	1	Title
4	2	
5	3	Interrogating cortical function with transcranial magnetic stimulation: Insights
6	4	from neurodegenerative disease and stroke
7	5	6
8	6	
9	7	Article Type
10		Antole Type
11	8	Daview
12	9	Review
13	10	
14	11	
15	12	Authors
16	13	
17	14	Smriti Agarwal ¹ , Giacomo Koch ² Argye E Hillis ³ , William Huynh ¹ , Nick S Ward ⁴ ,
18	15	Steve Vucic ⁵ , Matthew C Kiernan ¹
19	16	
20	17	1. Brain and Mind Centre, University of Sydney, and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital
21	189 222 2222 2222 2222 2222 2222 222 222	Sydney NSW 2050, Australia
22	20	2. Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome,
23	21	Italy; Stroke Unit, Department of Neuroscience, Policlinico Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
24	$\frac{22}{22}$	2 Department of Neural and Jakas University Ochool of Marining Delkinson, MD, 04007, UDA
25	$\frac{23}{24}$	 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA;
26	25	Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
27	26	4. Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, 33 Queen Square,
28	2 8	4. Sobel Department of Motor Neuroscience, OCE institute of Neurology, Oniversity College London, 55 Queen Square, London WC1N 3BG, UK;
29	29	The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK;
30	30	UCLPartners Centre for Neurorehabilitation, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
31	32	
32		5. Westmead Clinical School, University of Sydney, Sydney 2006, Australia
33	34	
34	35	
35	36	Word count Abstract 208, main text 4775 (excluding table, figure legends and
36	37	references)
37	38	References 189
38	39	Figures 3 (colour figures 3); Tables 1
39	40	
40	41	Corresponding author:
40	42	
42		Craviti A servel
43	43	Smriti Agarwal
44	44	Visiting research fellow
44	45	Smriti Agarwal Visiting research fellow ForeFront Kiernan Group The University of Sydney Brain and Mind Centre, Room 416
45	46	ForeFront Kiernan Group
40	47	The University of Sydney
48	48	Brain and Mind Centre, Room 416
40	49	Level 4, M02F, 94 Mallett Street Camperdown NSW 2050
	50	T +61 (2) 9114 4258
50	51	F: +61 (2) 9114 4254
51	52	E: <u>smriti.agarwal@cantab.net</u>
52 53	52 53	
53		
54	54	
55	55	
56		
57		
58		
59		https://mamapularint.com/innn
60		https://mc.manuscriptcentral.com/jnnp

56 Abstract

Transcranial magnetic stimulation (TMS) is an accessible, non-invasive technique to study cortical function in vivo. TMS studies have provided important pathophysiological insights across a range of neurodegenerative disorders and enhanced our understanding of brain reorganisation after stroke. In neurodegenerative disease, TMS has provided novel insights into the function of cortical output cells and the related intracortical interneuronal networks. Characterisation of cortical hyperexcitability in amyotrophic lateral sclerosis and altered motor cortical function in frontotemporal dementia, demonstration of cholinergic deficits in Alzheimer's disease and Parkinson's disease are key examples where TMS has led to advances in understanding of disease pathophysiology and potential mechanisms of propagation, with the potential for diagnostic applications. In stroke, TMS methodology has facilitated the understanding of cortical reorganisation that underlie functional recovery. These insights are critical to the development of effective and targeted rehabilitation strategies in stroke. The present Review will provide an overview of cortical function measures obtained using TMS and how such measures may provide insight into brain function. Through an improved understanding of cortical function across a range of neurodegenerative disorders, and identification of changes in neural structure and function associated with stroke that underlie clinical recovery, more targeted therapeutic approaches may now be developed in an evolving era of precision medicine.

87 Introduction

The ability to modify human brain function is a long held scientific aspiration. Centuries ago, cognitive neuroscientists used torpedo fish and eels to electrically stimulate the brain, while more conventional electricity was first used for brain stimulation in the 18th century. It was only three decades ago that Pat Merton and colleagues [1] achieved electrical stimulation of the motor cortex through the intact scalp to generate a relatively synchronous muscle response. One of the issues with this methodology of transcranial electrical stimulation (TES), however, was the stimulation of pain fibres on the scalp. Subsequently, Barker and his team [2] became the first to use magnetic stimulation (TMS) in the human brain to achieve simultaneous muscle activity. Over 18000 scientific publications relating to TMS have appeared (http://www.webofknowledge.com, topic = "transcranial magnetic stimulation" search) since Barker's first description, with over a third of these in the last 5 years alone, indicative of the pace at which the field is moving forward. The aim of the present Review is to provide the clinician with an overview of physiological considerations involved with TMS, including cortical output measures that provide important information regarding pathophysiological alterations in neurodegenerative disorders and post stroke reorganisation of neural structure and function. This Review aims to provide an overview of TMS applications and their utility in providing a functional understanding of disease mechanisms and the potential for development of novel diagnostic and prognostic tools in neurological

disease.

110 Measures of cortical function

TMS induces current flows in the brain by application of a pulsed magnetic field
leading to depolarisation of the underlying cortical neurons (Figure 1). The resultant
electrical activity in the brain can be modified by the shape and orientation of the coil
used, combined with underlying neuronal anatomy and orientation relative to the coil,
magnetic pulse wave form, intensity, frequency and pattern of stimulation [3-6].
The precise nature of the neuronal circuitry activated by TMS remains incompletely

- 117 understood. Applying TMS over the motor cortex (Figure 2), generates a
- 118 corticomotor neuronal volleys which may be a result of direct excitation of cortical

119	neurons (Direct or D-waves) or trans synaptic excitation (Indirect or I-waves). The I-
120	waves are thought to originate through a complex interaction between cortical output
121	cells (Betz cells, layer V) and interneuronal cells [3,7-9].
122	Following a brief overview of TMS output measures, their application as potential
123	diagnostic and prognostic markers will be further considered.
124	A widely used experimental paradigm involves application of TMS to the motor
125	cortex with recording electrodes placed over an intrinsic hand muscle in the
126	contralateral limb (Figure 2). The resultant motor-evoked potential (MEP) on
127	electromyography (EMG) is typically recorded from the abductor pollicis brevis (APB),
128	abductor digiti minimi (ADM) or the first dorsal interosseous (FDI) muscle. This
129	paradigm can be applied to quantity excitability characteristics of the underlying
130	motor cortex.
131	
	Motor Threehold (MT) indicates the acces with which mater certax output cells and
132	<i>Motor Threshold</i> (MT) indicates the ease with which motor cortex output cells and
133	corticomotor neurons can be excited. MT is thought to reflect the density of
134	corticomotor neuronal projections onto the anterior horn cells. It thus, follows, that
135	MTs tend to be lower in the dominant hand [10] and correlate with the performance
136	of fine motor tasks [11]. MTs have the potential of providing a biomarker of cortical
137	neuronal membrane excitability. Voltage gated sodium channels are critical to
138	cortical axon excitability [12] while excitatory synaptic neurotransmission in the
139	neocortex is mediated by the glutaminergic alpha-amino-3-hydroxy-5-methyl-4-
140	isoxazoleproprionic acid (AMPA) receptors [13]. Thus voltage gated sodium channel
141	blocking drugs increase MT [14,15] while glutaminergic agonists decrease it [16].
142	Interestingly, neuromodulatory agents affecting GABA, dopaminergic, noradrenergic
143	and cholinergic systems, do not affect the motor threshold [17].
144	MT was initially defined as the minimum stimulation intensity (% maximum stimulator
145	output) required to achieve an MEP response of (amplitude >50 μ V) in the target
146	muscle in 50% of stimulus trials [18]. Evolving studies in threshold tracking TMS
147	have led to redefinition of the MT as stimulus required to achieve and maintain a
148	target MEP response of 0.2mV (± 20 %) [19,20]. MT tends to be lower in a
149	voluntarily contracting muscle (active motor threshold, AMT) when compared to that
150	in a muscle at rest (resting motor threshold, RMT) [21].

https://mc.manuscriptcentral.com/jnnp

Page 5 of 36

1		
2 3	151	Single Pulse TMS measures
4 5	152	Motor Evoked Potential (MEP) amplitude represents summation of descending
6 7	153	corticospinal volleys onto motor neurons comprising of direct (D) and indirect (I)
8	154	waves on to the spinal motor neurons [22,23]. Increasing MEP amplitude with
9 10	155	increase in stimulus intensity generates a sigmoid stimulus response curve [21].
11 12	156	MEP may be represented as a percentage of peripheral stimulation derived
13	157	compound muscle action potential (CMAP), to account for the lower motor neuron
14 15 16	158	contribution.
17	159	Although, the MEP reflects the density of corticomotor neuronal projections onto
18 19	160	motor neurons similar to the MT, [24], the neurotransmitter pathways involved in the
20	161	generation of the MEP are different. GABAergic agents acting via the $GABA_A$
21 22	162	receptor suppress the MEP while glutaminergic and noradrenergic agents increase
23 24	163	the MEP amplitude [25,26].
25 26	164	The main limitation in utilising the MEP response as a biomarker of cortical motor
27	165	neuronal function is the significant intersubject and intertrial variability in MEP
28 29	166	latency and amplitude [27].
30 31	167	Central Motor Conduction Time (CMCT) is a measure of the time taken by a
32 33	168	neural impulse to travel from the motor cortex to stimulate the spinal or bulbar motor
34	169	neuron, and thus, is also indicative of the integrity of corticospinal tracts [28]. CMCT
35 36	170	is an overall reflection of time to activation of the pyramidal cells and conduction time
37 38	171	of neural impulses in the corticospinal tract.
39 40	172	In TMS studies, CMCT is usually calculated using the F wave method or cervical
40	173	nerve root stimulation method [29,30]. Both these methods measure the delay
42 43	174	between the MEP latency and time to generate a response using peripheral
44	175	stimulation. The key distinction between these two methods is the inclusion of the
45 46	176	spinal motor neuron while measuring the peripheral stimulation time. In the F wave
47 48	177	method, a peripheral nerve is supramaximally stimulated leading to antidromic
49	178	stimulation which travels up the nerve root to the spinal motor neuron. This, in turn
50 51	179	stimulates the efferent root orthodromically, generating an F wave. In the cervical
52 53	180	nerve root stimulation, the peripheral conduction time is estimated as the time taken
54	181	to generate a CMAP by directly stimulating the spinal nerve root. The CMCT can be
55 56 57 58	182	variable with a range of physiological and subject dependent factors such as age,

183 gender, hand dominance and neck position

184 Cortical Silent Period (CSP) refers to a transient cessation of voluntary activity on 185 electromyography (EMG) in a target muscle measured after magnetic stimulation of 186 the contralateral motor cortex. CSP is a reflection of GABA_B receptor mediated 187 cortical inhibition [31,32] and also appears to be influenced by the density of 188 corticomotor neuronal projections onto the spinal motor neuron [27]. It is, thus, the 189 longest in the upper limb muscles.

190 CSP is calculated as the time interval between the onset of the MEP response and
191 resumption of voluntary EMG activity following TMS [31], and increases with stimulus
192 intensity.

193 Paired Pulse TMS Paradigms

Paired pulse techniques provide insights into functioning of intracortical excitatory and inhibitory circuits [27] by measuring the modulation of the cortical response to a test stimulus preceded by a conditioning stimulus. The two commonly applied paired pulse paradigms comprise are referred to as the constant stimulus [33] and threshold tracking [19] techniques. Either can be used to measure the short interval intracortical inhibition (SICI), long interval intracortical inhibition (LICI) and intracortical facilitation (ICF), each of which is an index of cortical motor function. Paired pulse TMS paradigms (Figure 2) used to determine the SICI and ICF consist of a subthreshold conditioning stimulus followed, at prespecified intervals (ISI), by a suprathreshold test stimulus. The constant stimulus paired pulse paradigms [33] measure the variation in MEP responses, while keeping the test and conditioning stimuli constant. Inhibition is observed at ISI of 0-5 ms facilitation at longer intervals between the stimuli. To overcome the issue of inherent MEP variability, which was used as an output measure in the constant stimulus protocols, threshold tracking protocols [19,34] were developed. These rely on using a fixed target amplitude MEP response and track the test stimulus intensity required to achieve this response. Higher stimulus intensity required to maintain this target response indicates inhibition while a lower intensity suggests facilitation. The target MEP response is chosen from the steepest part of the stimulus response curve (Figure 2c), thus reducing the variation in the outcome variable. Studies using cervical epidural electrode recordings suggest that SICI is associated

2 3	215	with a reduction in the amplitude of I waves in a temporal pattern consistent with
4	216	inhibitory post synaptic potentials mediated via GABA _A receptors [35,36]. Drugs
5 6	217	potentiating $GABA_A$ receptor mediated neurotransmission, thus, increase the SICI.
7 8	218	Other neurotransmitter systems may have an indirect role via modulation of GABA _A
9	219	receptors, as indicated by SICI alterations using glutaminergic agents, dopamine
10 11	220	agonists and noradrenergic blockers [37,38]. The cortical signature of SICI is likely to
12 13	221	be a combination of synaptic processes, inhibitory interneuronal interactions and
14 15	222	axonal refractoriness [20,39-41].
16 17	223	The physiological processes driving ICF remain even less well understood.
18	224	Interestingly, ICF is decreased by antiglutaminergic agents [37] and is not associated
19 20	225	with changes in I waves [27] which coincide with SICI [15].
21 22	226	LICI occurs when a suprathreshold conditioning stimulus is followed by a test
23	227	stimulus at an ISI of 50-300 ms [3]. LICI seems to be mediated via GABA _B receptors
24 25	228	[42,43].
26 27	229	Short latency afferent inhibition (SAI) is the suppression of TMS induced MEP
28 29	230	response after peripheral nerve stimulation [44,45]. Thus, when a median sensory
30 31	231	stimulation is administered approximately 20 ms prior to the TMS pulse over the
32	232	contralateral motor cortex, the MEP response from the APB muscle is suppressed. It
33 34	233	reflects inhibitory modulation of large sensory fibres on the motor cortex and is likely
35 36	234	to involve central cholinergic transmission [46,47].
37 38	235	Repetitive TMS paradigms (rTMS)
39 40	236	Repetitive TMS (rTMS) with applications of trains of TMS pulses over several
41	237	minutes duration [48], produces cortical changes that last beyond the duration of
42 43	238	stimulation, in a frequency dependent manner [14,49]. Simple rTMS protocols
44 45	239	involve application of single stimuli at fixed interstimulus intervals (ISI) and their
45 46 47	240	effects depend of the frequency of stimuli used. A low frequency stimulation (≤1Hz)
48	241	depresses cortical excitability, while high frequency (5-20Hz) stimulation increases
49 50	242	excitability (Figure 1). Patterned rTMS protocols utilise a combination of different ISIs,
51 52	243	a common example of this being theta burst TMS (TBS), that incorporates triplet
53	244	TMS pulses (bursts of 3 pulses at 50 Hz repeated at 200 ms intervals) to induce
54 55	245	longer lasting effects than conventional rTMS protocols for a relatively shorter
56 57	246	duration of application [50]. Continuous theta burst stimulation (cTBS), usually
58		
59		

involving trains of uninterrupted stimulation for 20-40 s, has an inhibitory effect on
corticospinal excitability whereas intermittent theta burst stimulation (iTBS) has the
opposite effect.

At a larger scale, TMS may enhance the understanding of systems level changes in brain circuitry. The application of rTMS over a specified cortical region has effects on remote brain areas [51] that may modulate network activity in the brain leading to behavioural alterations not directly related to the area being stimulated by the TMS directly [52]. In terms of specificity, the same output can be elicited using a variety of stimulation sites. For instance, motor activity changes are associated with stimulation of the primary motor cortex M1 [50], supplementary motor area SMA [53] dorsal pre-motor cortex PmD [54], as well as non-motor areas such as the cerebellum [55] and dorsolateral pre frontal cortex (DLPFC) [56]. The potential for rTMS effects to last beyond the duration of stimulation this has been observed in a number of therapeutic applications in neurological disorders [57,58]. However, therapeutic applications of rTMS are outside the scope of this article.

Safety considerations

With the rapid increase in TMS applications in research and rehabilitation trials, safety in the clinical setting remains an important consideration. Although rare, seizure risk is mainly pertinent to rTMS protocols with an estimated risk in the region of 0.1% [59,60]. Most reported cases of seizures with TMS occurred before 1998 when higher frequency trains were routinely administered and typically occurred in patients who had a previous history of seizures. Resting EEG abnormalities have been noted during TMS, though mostly in patients with epilepsy and they do not predict occurrence of seizures [61,62]. Isolated rare cases in patients have been reported since with concomitant seizure threshold lowering drugs (e.g. SSRI) or after sleep deprivation [59]. Risk of minor adverse events such as mild headache, tinnitus, cutaneous discomfort, neck muscle contraction, nausea, light headedness or syncope, unilateral eye pain and lacrimation remains less than 5%. To put this into perspective, the risk of seizures with penicillins and carbapenem drugs is up to 5% [63] and increases further with predisposing factors. To date, meta analyses of published treatment trials of TMS [64-66] have been reassuring and support safe use

279 of TMS in patients and healthy volunteers.

TMS is considered safe in individuals with other stimulator devices such as VNS systems, cardiac pacemakers, and spinal cord stimulators provided that the TMS coil is not activated near the implanted wires [59]. Due to risk of induced currents, TMS should be avoided in patients with DBS, cochlear implants and with epidural electrodes. Additional safety studies are required to establish safe levels of currents that could be used with these implanted devices. Ex vivo studies have, reassuringly, demonstrated minimal, well below prescribed safety limits, heating of metal stents and aneurysm clips with rTMS protocols that have current approval for clinical uses [67,68]. However, caution is still warranted before more definitive evidence of safety becomes available from in vivo animal models and subsequently, human studies.

292 Cortical dysfunction in neurodegenerative disease

Assessment of cortical function in neurodegenerative disease has provided valuable pathophysiological insights and has the potential for diagnostic applications (Table 1).

(i) Emerging biomarkers in amyotrophic lateral sclerosis (ALS)

Determining the relationship between upper and lower motor neuron dysfunction remains key to understanding the pathogenesis of amyotrophic lateral sclerosis (ALS) [69,70]. Initial studies using single pulse TMS approaches demonstrated a reduction in motor threshold and the cortical silent period as features of early disease, providing preliminary evidence for cortical hyperexcitability in ALS [71,72]. Paired pulse techniques have, subsequently, provided more detailed evidence cortical excitability in terms of reduction or absence of SICI and increase in ICF [19]. SICI reductions precede electrophysiological evidence of peripheral neurodegeneration [73] as well as clinical evidence of lower motor neuron dysfunction in ALS [74]. SICI and ICF reduction are also seen in atypical variants of ALS with phenotypic predominance of lower motor neuron dysfunction [75], while these changes are not seen in ALS mimic disorders [76,77] such as spinobulbar muscular atrophy, despite a comparable disease burden. These findings strongly support the notion of cortical primacy in ALS [78]. Other

contributory evidence for this theory is the demonstration of reduced transcallosal inhibition in ALS [79]. Partial normalisation of SICI following the administration of riluzole [80], an antiglutaminergic drug used in ALS points to a pathogenic role for cortical hyperexcitability in ALS. This also highlights the potential application of TMS parameters in future clinical trials of ALS. SICI has been shown to be the greatest sensitivity and specificity for as a diagnostic marker in ALS [81]. Combining TMS measures with peripheral neurophysiological measures can, thus, potentially greatly increase the diagnostic accuracy in ALS [82]. (ii) Motor cortical alterations in Alzheimer's disease (AD) The appearance of motor signs in AD is a late event in the natural history of the illness [83] and is likely due to the spread of pathology into the motor cortices and striatal structures with disease progression [84]. TMS studies have demonstrated a bimodal pattern for changes in the motor threshold in AD. RMT appears to be reduced in early AD and shows progressive decline despite anticholinergic treatment [85,86]. The early changes may be related to modulation of glutaminergic pathways by changes in activity of muscarinic cholinergic receptors [87], suggesting a degree of functional reorganisation [88,89]. In later stages of AD, the observed increase in MT is a likely due to cortical neuronal degeneration, indicative of more widespread cortical dysfunction [86]. Evidence regarding SICI changes in AD is more variable [47,90]. A more recent study has found alterations in LICI which correlate with cognitive scores [91].

Loss of short latency afferent inhibition (SAI) appears to be a more consistent feature in AD [47,92,93], and seems to be normalised by administration of cholinesterase inhibitors [47]. SAI appears to be mediated by cholinergic neurons [94] and indirectly by GABAergic interneuronal inputs to cholinergic pyramidal neurons [95,96]. Muscarinic ACh receptor blockade with scopolamine specifically inhibits SAI, while not affecting the short interval intracortical inhibition, cortical silent period and intracortical facilitation, which are believed to be mediated by GABAergic interneurons [39]. Interestingly, SAI does not seem to be affected in

1		
2 3 4	342	frontotemporal dementia (FTD), a disorder which does not directly involve the
5	343	cholinergic system [97] unlike AD [98].
6 7	344	SAI changes have also been demonstrated in patients with Down's syndrome
8 9	345	who are at risk of developing early onset AD [99]. These findings have the
10	346	potential for translation to the clinic for differentiating FTD from AD and are likely
11 12	347	to be more cost effective than imaging modalities such as PET.
13 14	348	TMS has also been used to demonstrate the disruption of long term potentiation
15 16	349	(LTP) related cortical changes early on in the disease trajectory [100] in keeping
17	350	with animal models of AD [101]. As such, LTP-like cortical alterations could
18 19	351	provide a viable biomarker useful to assess synaptic impairment and predict
20 21	352	subsequent cognitive decline progression in AD patients [102].
22	353	
23 24	354	(iii) Quantifying motor cortex dysfunction in Parkinson's disease (PD)
25 26	355	and other movement disorders
27		
28 29	356	While the degeneration of dopaminergic neurons in the substantia nigra and
30	357	involvement of nigrostriatal pathways are the primary pathogenic changes in
31 32	358	PD, functional changes in the motor cortices have been well recognised [103-
33 34	359	105]. SICI reductions have been reported in PD [106,107] particularly at
34 35	360	higher stimulus intensities [108] suggesting a dysfunction in intracortical
36 37	361	facilitatory pathways. Longitudinal evaluation of cortical dysfunction in PD
38	362	revealed alterations in CSP between the less and more affected brain
39 40	363	hemispheres which correlate with motor progression [109]. SAI reductions
41	364	have also been documented in PD [110], particularly in the context of
42 43	365	cognitive symptoms [111,112], suggesting a possible role for cholinergic
44 45	366	pathways in the pathogenesis of cognitive dysfunction. TMS studies have also
46	367	found alterations in interhemispheric inhibition, supporting the view that mirror
47 48	368	movements in PD patients originate from crossed corticospinal projections
49	369	rather than unmasking of ipsilateral projections PD [113,114]. In genetic forms
50 51	370	of PD, distinct patterns have been found using TMS. Reduction in SICI
52 53	371	recruitment have been found in asymptomatic Parkin mutation carriers,
54	372	without significant changes in overall SICI, indicative of altered cortical
55 56	373	function in asymptomatic carriers [115]. SICI reduction has not been noted in
57 58		

Parkin patients. Given that SICI appears normal in Parkin patients and CMCT is prolonged, the reduced SICI recruitment may be indicative of a compensatory change in the motor cortex to subclinical dopaminergic dysfunction in mutation carriers. On the other hand, patients with leucine-rich repeat kinase2 (LRRK2), appear to have a markedly hyperexcitable motor cortex when compared to those with idiopathic PD, which is a likely contributor to functional changes in patients [116]. Motor cortical changes appear in the early stages if Huntington's disease (HD) as shown by imaging studies [117,118] and pathological confirmation of neuronal loss in the primary motor and anterior cingulate cortices [119]. Moreover, motor symptomatology correlates with primary motor cortex involvement [119,120] while cognitive and behavioural features seem to correspond with changes other regions including prefrontal and anterior cingulate cortical areas [118-120]. TMS studies have captured early motor cortical dysfunction in HD including a higher MT and a reduced SAI, the latter being related to motor symptoms [121]. In addition, cortical hyperexcitability in terms of decreased SICI and increased ICF [122,123] have also been shown in HD, especially in the context of motor symptoms, indicating a potential role for both GABA [124] and glutaminergic pathways in HD pathogenesis. Atypical parkinsonian syndromes include progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) and are clinically and pathologically heterogeneous disorders. Motor cortical and corticospinal involvement is seen in these disorders to varying degrees [125-127]. Reduced SICI and abnormalities in interhemispheric inhibition have been demonstrated in PSP [128,129], the latter being more evident in the Richardson syndrome compared with parkinsonism predominant PSP [130]. RMT is elevated in CBD [128,131] and along with reduced SICI and may correlate with primary motor cortex atrophy [132], indicating more severe neuronal loss in the motor cortex in CBD. Increased motor thresholds, reduced SICI and interhemispheric inhibition changes have also been demonstrated in MSA [128,133,134]. However, the correlation between these changes and clinical features remains less clear [135,136], and findings regarding interhemispheric inhibition are inconsistent [137]. Motor cortex

 functional alterations have also been reported in PSP [129] and MSA [134].

Overall, findings from TMS studies suggest that primary motor cortex disinhibition may be an early process in PSP. In contrast, in CBD, global changes in inhibitory process may be secondary to neurodegeneration in the motor cortex. (iv) Novel insights in frontotemporal dementia (FTD) FTD encompasses three heterogeneous disorders including behavioural variant frontotemporal dementia (bvFTD), semantic dementia and progressive nonfluent aphasia. Characteristic phenotypic features in FTD include deficits in social cognition, executive function, language and behaviour. There is emerging evidence to suggest that ALS and FTD lie on a disease continuum with motor features prominent at one end and cognitive features at the other [138,139]. Concurrence of these two conditions in patients with C9orf72 mutation [140,141], occurrence of TAR DNA binding protein-43 (TDP-43) pathology in both conditions [142], clinical and electrophysiological evidence of upper motor neuron dysfunction in FTD [143], alongside evidence of behavioural and cognitive function in ALS are all supportive of this notion [144,145]. Motor cortex involvement in FTD occurs with the spread of pathology from frontal regions posteriorly [138], and anterior cingulate and M1 involvement on imaging overlaps with the imaging patterns seen in ALS [146]. TMS studies have shown central motor circuit abnormalities in FTD (reduced or absent MEP, increased MEP latency, increased CMCT) even in the absence of clinical evidence of pyramidal tract involvement, while MT and SAI have been found to be normal [97,143]. Earlier studies had found no significant changes in SICI and ICF, but more recent studies indicate SICI reductions in FTD [143,147]. SICI reductions in FTD seem to occur to a lesser degree than those seen in ALS. The preservation of cholinergic pathways evidenced by relatively normal SAI in conjunction with abnormalities in SICI and ICF have been utilised to distinguish FTD from AD [147]. https://mc.manuscriptcentral.com/jnnp

440 Understanding and predicting recovery after stroke

Recovery from stroke is modulated by the intrinsic capacity of the brain to reorganise surviving brain networks. This process takes place through a variety of complex cellular processes including inflammation, growth factors, changes in excitatory and inhibitory neurotransmitters, transcriptional changes, axonal sprouting, neurogenesis, gliogenesis and synaptogenesis [148]. While there is variation related to stroke subtype and individual patient factors [149], severity of the initial deficit after stroke is the predominant predictor of recovery, referred to as proportional recovery. [150,151]. The ability to elicit and MEP response after stroke is a predictor of proportional recovery, regardless of the severity of initial impairment [152,153].

Studies in the motor domain indicate that patients with mild to moderate upper limb deficit are able to recover 70% of lost function in the first three months after stroke. However, in patients with severe stroke, recovery is proportional to initial severity in about half of the patients with the other half making no recovery at all. Stroke lesion induced structural and functional changes in the brain occur in the early phase after stroke coinciding with a period of heightened reorganisation, which can support some restoration of function referred to as spontaneous biological recovery [150]. While the precise biological mechanisms underlying spontaneous biological recovery are incompletely understood, evidence from animal models [154] suggests that behavioural training administered in a critical time window [155,156] can facilitate this process. The overarching goal of neuromodulatory approaches is to augment the process of spontaneous recovery and to change the trajectory of poor recovery to proportional recovery.

Early after stroke, glutaminergic excitotoxicity leads to cell death and counteracts
GABAergic inhibition [148,157,158] .The balance between glutaminergic
excitotoxicity and GABAergic inhibition can influence regenerative processes and
may reverse in later phases of recovery. TMS based approaches can be used to
better understand these excitability changes and to guide therapeutic
neuromodulation in an appropriate time window.

Increased transcallosal inhibition from the contralesional hemisphere [159,160], may
suppress excitability of the lesioned hemisphere. More recent work has determined
that transcallosal inhibition from ipsilesional to contralesional hemisphere may

increase in chronic stroke patients [161]. Both these patterns seem to interfere with functional recovery [162,163]. A meta-analysis of TMS studies of post stroke cortical changes found no asymmetry in interhemispheric inhibition in stroke patients in the small number of available studies. In terms of experimental rehabilitation programmes, facilitating affected M1 excitability directly may be more beneficial than suppressing unaffected M1 excitability to promote post-stroke recovery [164]. Contralesional activity may play some role in improving function [165,166]. An important determinant of recovery that interacts with excitability changes is the extent of structural damage to key pathways [167,168]. Current understanding of recovery is well described under the 'bimodal balance recovery model' [169]. This model suggests that changes in interhemispheric activity interact with the extent of surviving neural pathways, referred to as the 'structural reserve'. Thus, in strokes with a smaller deficit and a large structural reserve, interhemispheric imbalance predicts poorer outcomes. In these patients, restoration of activity towards the physiological equilibrium should be a primary therapeutic goal. On the other hand, in strokes with more severe deficits and lower structural reserve, the interhemispheric imbalance may allow some compensatory changes leading to varying amounts of functional recovery. TMS has been used to interrogate cortical reorganisation in patients with stroke and can be useful for prognosis. The ability to elicit an MEP response after stimulation of the lesioned motor cortex might help predict motor function recovery [170,171]. Conversely, inability to elicit an MEP after ipsilesional TMS and increased MEP after contralesional stimulation seems to predict poorer recovery of motor function [172,173]. Likewise, appearance of MEP responses after ipsilesional stimulation, when MEP responses were not elicited previously, is associated with better functional recovery [174]. Alterations in cortical excitability in the lesioned hemisphere have been demonstrated using TMS in stroke patients [175] (Figure 3). Prolongation of CSP in the lesioned hemisphere, indicating increased intracortical inhibition, has been demonstrated after subcortical stroke [176]. On the other hand, SICI and long interval intracortical inhibition (LICI) are suppressed in the affected hemisphere [177-179], while ICF seems to be unaltered after stroke [178,180-182].

- 503 Contralesional changes in excitability are less marked. MEP responses and motor
- 504 thresholds appear to be largely intact [170,181,183-186] in the paretic limb, while

https://mc.manuscriptcentral.com/jnnp

505	some studies suggest alteration in SICI [177,178,181,187]. Indeed, recent work
506	evaluating longitudinal changes in cortical excitability after stroke using TMS from as
507	early as the first week after stroke up to a year afterwards, shows that contralesional
508	hyperexcitability evolves differently in patients with different stroke types and may
509	have an adaptive role when ipsilesional pathways are significantly disrupted
510	[179,187]. SICI is decreased in both the affected and unaffected hemisphere after
511	stroke, but tends to remain suppressed only in patients with larger strokes and more
512	severe clinical deficits [187].
513	Clearer understanding of neuroplastic changes underlying recovery is essential for
514	development of personalised rehabilitation strategies for patients and application in
515	clinical trials [168] accounting for the topography of damaged and surviving neural
516	pathways after a stroke. The predicting recovery potential (PREP) algorithm
517	illustrates how a sequential consideration of clinical, TMS and imaging factors can
518	provide prognostic information for motor function recovery in stroke [188,189]. The
519	key factors incorporated into this algorithm are the extent of clinical weakness, ability
520	to elicit an MEP response in the paretic hand and the degree of corticospinal tract
521	involvement on diffusion tensor imaging. Such a sequential approach has been
522	shown to increase therapy efficiency while achieving good clinical outcomes in post
523	stroke rehabilitation [153].
524	In summary, TMS has evolved as a readily accessible, non-invasive
525	neurostimulation tool with potentially wide ranging diagnostic and prognostic
526	applications. Separately, TMS provides a unique research tool to investigate
527	pathophysiological changes in the cortex in stroke and neurodegenerative disorders.
528	Applications of TMS based biomarkers in clinical trials are likely to emerge. In an
529	evolving era of precision medicine, TMS based approaches have the potential to
530	make personalised rehabilitative and restorative interventions in the future a reality,
531	with better understanding of mechanisms of loss of function in neurodegeneration
532	and the trajectory of recovery in stroke.
533	
534	
535	
536	

537 538 Table 1 Cortical function alterations across neurodegenerative 539 disorders

	RMT %	MEP %	SICI (%)	ICF (%)	CSP (ms)	CMCT (ms)	SAI (%)
ALS [19,70,72]	Reduced Increased Inexcitabl e	Increased Normal	Reduced	Increased Normal	Reduced	Increased Normal	N/A
AD [47,86,90,92, 93]	Reduced Increased	Increased Normal	Reduced Normal	Normal	Normal Reduced	Normal	Reduced
PD [103,106,110 -112]	Normal	Normal	Reduced Normal	Normal	Reduced Normal	Normal	Reduced Increased Normal
HD [121,122]	Increased	Reduced	Reduced	Increased	Increased Reduced	Normal	Reduced
FTD [97,147]	Normal	Absent Reduced	Reduced Normal	Normal	Normal	Increased Normal	Normal
MSA [128,133,134]	Increased Normal	Normal	Reduced	Normal	Increased	Normal	Reduced Normal
PSP [128- 130]	Normal	Increased	Reduced	Normal	Reduced	Normal	Normal

ALS (amyotrophic lateral sclerosis), FTD (frontotemporal dementia), AD (Alzheimer's disease), PD (Parkinson's disease), PSP (progressive supranuclear palsy), MSA (multiple system atrophy), HD (Huntington's disease), RMT (resting motor threshold), MEP (motor evoked potential), CMCT (central motor conduction time), CSP (cortically silent period), SICI (short interval intracortical inhibition), ICF (intracortical facilitation), SAI (short latency afferent inhibition)

2	582	
3	583	Contributors
4	584	
5	585	MCK and SA conceived the idea for the article. SA drafted the
6	586	manuscript. All authors revised the manuscript critically for important intellectual
7		
8	587	content, and gave final approval of the version to be published.
9	588	
10	589	Competing interests
11	590	
12	591	None declared
13	592	
14	593	Funding
15	594	
16	595	This work was supported by funding to Forefront, a collaborative research group
17	596	dedicated to the study of motor neuron disease, from the National Health and
18	597	Medical Research Council of Australia program grant (#1037746), the Motor Neuron
19 20	598	Research Institute of Australia Ice Bucket Challenge Grant and grant aid from
20	599	Magnetic Health Science Foundation.
21		
22	600	OA is funded by the Ellinge Oliffe travelling followship from the David Oppiets of
23	601	SA is funded by the Ellison-Cliffe travelling fellowship from the Royal Society of
24	602	Medicine, UK
25	603	
26 27	604	AH is funded by NIH P50 DC014664 and NIH ROI DC05375.
	605	
28	606	
29 30	607	
30 31	608	
32	609	
33	610	
34	611	
35	612	
36	613	Figure legends
37		
38	614	Figure 4. TMO using a simular soil showing the lines of flux of the magnetic field and
39	615	Figure 1. TMS using a circular coil showing the lines of flux of the magnetic field and
40	616	directions of stimulating and induced currents.
40	617	
42	618	Figure 2. The paired-pulse threshold tracking TMS (TT-TMS) paradigm to measure
43	619	cortical excitability. 2a) Short interval intracortical inhibition (SICI) occurs at an
44	620	interstimulus interval (ISI) of 0-7 ms while intracortical facilitation (ICF) occurs at an
45	621	ISI of 7-10 ms. 2b) TMS coil placed over the vertex stimulates the motor cortex and
46	622	the response is recorded from the opposite abductor pollicis brevis muscle. 2c)
47	623	Change in stimulus intensity required to achieve a target motor evoked potential
48	624	(MEP) of 0.2 mV(±20%) is used to quantify the SICI and ICF.
49	625	
50	626	Figure 3. TMS may be used to stimulate the perilesional cortex after stroke and/or
51		
52	627	suppress excitability of the opposite hemisphere.
53	628	
55	629	
55	630	
56	631 632	
57		
58		
59		
60		https://mc.manuscriptcentral.com/jnnp

1			19
1 2			
3	633		
4	634		
5	635	Refe	erences
6	636	1	Morton DA, Hill DK, Morton HB, et al. Seena of a technique for electrical
7	637	1	Merton PA, Hill DK, Morton HB, <i>et al.</i> Scope of a technique for electrical
8	638		stimulation of human brain, spinal cord, and muscle. 1982; 2 :597–600.
9	639	2	Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of
10	640	2	human motor cortex. 1985; 1 :1106–7.
11	040		
12 13	641	3	Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic
13	642	-	stimulation of the brain, spinal cord, roots and peripheral nerves: Basic
14	643		principles and procedures for routine clinical and research application. An
16	644		updated report from an I.F.C.N. Committee. <i>Clin Neurophysiol</i> 2015; 126 :1071–
17	645		107. doi:10.1016/j.clinph.2015.02.001
18	015		
19	646	4	Hallett M. Transcranial magnetic stimulation and the human brain. Nature
20	647		2000; 406 :147–50.
21	017		
22	648	5	Tofts PS. The distribution of induced currents in magnetic stimulation of the
23	649		nervous system. Phys Med Biol 1990;35:1119–28.
24			
25	650	6	Abdeen MA, Stuchly MA. Modeling of magnetic field stimulation of bent
26	651		neurons. IEEE Trans Biomed Eng 1994;41:1092–5. doi:10.1109/10.335848
27			
28	652	7	Di Lazzaro V, Profice P, Ranieri F, et al. I-wave origin and modulation. Brain
29 30	653		Stimul 2012; 5 :512–25. doi:10.1016/j.brs.2011.07.008
31		-	
32	654	8	Di Lazzaro V, Ziemann U, Lemon RN. State of the art: Physiology of
33	655		transcranial motor cortex stimulation. Brain Stimul 2008;1:345–62.
34	656		doi:10.1016/j.brs.2008.07.004
35		0	
36	657	9	Ziemann U, Rothwell JC. I-waves in motor cortex. <i>Journal of Clinical</i>
37	658		Neurophysiology 2000; 17 :397–405.
38	650	10	Mandanall DA Shanira DE Chianna KH at al Hamianharia thrashold
39	659	10	Macdonell RA, Shapiro BE, Chiappa KH, et al. Hemispheric threshold
40	660		differences for motor evoked potentials produced by magnetic coil stimulation.
41	661		Neurology 1991; 41 :1441–4.
42 43	662	11	Triggs WJ, Calvanio R, Levine M. Transcranial magnetic stimulation reveals a
43 44	663	11	hemispheric asymmetry correlate of intermanual differences in motor
44 45	664		performance. <i>Neuropsychologia</i> 1997; 35 :1355–63.
46	004		
47	665	12	HODGKIN AL, HUXLEY AF. A quantitative description of membrane current
48	666	12	and its application to conduction and excitation in nerve. J Physiol (Lond)
49	667		1952; 117 :500–44. doi:10.1111/(ISSN)1469-7793
50	007		
51	668	13	McCormick D. Membrane properties and neurotransmitter actions. In Douglas
52	669		RJ, Martin K. <i>The synaptic organization of the brain</i> New York, USA: Oxford
53	670		University Press, 2004:39-78.
54	5,0		· · · · · · · · · · · · · · · ·
55	671		
56 57			
57 58			
58 59			
60			https://mc.manuscriptcentral.com/jnnp

1			20
2 3 4	672 673	14	Chen R, Classen J, Gerloff C, <i>et al.</i> Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. <i>Neurology</i> 1997; 48 :1398–403.
5 6 7 8 9	674 675 676	15	Ziemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. <i>J Physiol (Lond)</i> 1996; 496 :873–81.
9 10 11 12 13 14	677 678 679 680	16	Di Lazzaro V, Oliviero A, Pilato F, <i>et al.</i> Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease: evidence of impaired glutamatergic neurotransmission? <i>Ann Neurol</i> 2003; 53 :824–authorreply824–5. doi:10.1002/ana.10600
15 16 17	681 682	17	Ziemann U, Reis J, Schwenkreis P, <i>et al.</i> TMS and drugs revisited 2014. <i>Clin</i> <i>Neurophysiol</i> 2015; 126 :1847–68. doi:10.1016/j.clinph.2014.08.028
18 19 20 21	683 684 685	18	Rossini PM, Berardelli A, Deuschl G, <i>et al.</i> Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999; 52 :171–85.
22 23 24 25	686 687 688	19	Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. <i>Brain</i> 2006; 129 :2436–46. doi:10.1093/brain/awl172
26 27 28 29 30	689 690 691	20	Fisher RJ, Nakamura Y, Bestmann S, <i>et al.</i> Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. <i>Exp Brain Res</i> 2002; 143 :240–8. doi:10.1007/s00221-001-0988-2
30 31 32 33	692 693	21	Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. <i>Exp Brain Res</i> 1997; 114 :329–38.
34 35 36	694 695	22	Amassian VE, Stewart M, Quirk GJ, <i>et al.</i> Physiological basis of motor effects of a transient stimulus to cerebral cortex. <i>Neurosurgery</i> 1987; 20 :74–93.
37 38 39	696 697	23	Rusu CV, Murakami M, Ziemann U, <i>et al.</i> A model of TMS-induced I-waves in motor cortex. <i>Brain Stimul</i> 2014; 7 :401–14. doi:10.1016/j.brs.2014.02.009
40 41 42 43	698 699 700	24	Ziemann U. Cortical threshold and excitability mesaurements. In: Eisen A. <i>Clinical Neurophysiology of Motor Neuron Diseases: Handbook of Clinical</i> <i>Neurophysiology</i> . Amsterdam: Elsevier, 2004: 317–35.
44 45 46 47	701 702 703	25	Paulus W, Classen J, Cohen LG, <i>et al.</i> State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. <i>Brain Stimul</i> 2008; 1 :151–63. doi:10.1016/j.brs.2008.06.002
48 49 50 51	704 705 706	26	Boroojerdi B, Battaglia F, Muellbacher W, <i>et al.</i> Mechanisms influencing stimulus-response properties of the human corticospinal system. <i>Clinical Neurophysiology</i> 2001; 112 :931–7.
52 53 54 55 56 57 58	707 708 709	27	Chen R, Cros D, Curra A, <i>et al.</i> The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. <i>Clinical Neurophysiology</i> 2008; 119 :504–32. doi:10.1016/j.clinph.2007.10.014
59 60			https://mc.manuscriptcentral.com/jnnp

2			
3 4 5	710 711 712	28	Takeuchi N, Izumi S-I. Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views. <i>Stroke Res Treat</i> 2012; 2012 :584727. doi:10.1155/2012/584727
6 7 8 9	713 714	29	Claus D. Central motor conduction: method and normal results. <i>Muscle Nerve</i> 1990; 13 :1125–32. doi:10.1002/mus.880131207
9 10 11 12 13	715 716 717	30	Mills KR, Murray NM. Electrical stimulation over the human vertebral column: which neural elements are excited? <i>Electroencephalogr Clin Neurophysiol</i> 1986; 63 :582–9.
14 15 16	718 719	31	Cantello R, Gianelli M, Civardi C, <i>et al.</i> Magnetic brain stimulation: the silent period after the motor evoked potential. <i>Neurology</i> 1992; 42 :1951–9.
17 18 19 20	720 721 722	32	Siebner HR, Dressnandt J, Auer C, <i>et al.</i> Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. <i>Muscle Nerve</i> 1998; 21 :1209–12.
21 22 23	723 724	33	Kujirai T, Caramia MD, Rothwell JC, <i>et al.</i> Corticocortical inhibition in human motor cortex. <i>J Physiol (Lond</i>) 1993; 471 :501–19.
24 25 26 27	725 726 727	34	Vucic S, Howells J, Trevillion L, <i>et al.</i> Assessment of cortical excitability using threshold tracking techniques. <i>Muscle Nerve</i> 2006; 33 :477–86. doi:10.1002/mus.20481
28 29 30 31 32	728 729 730	35	Nakamura H, Kitagawa H, Kawaguchi Y, <i>et al.</i> Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. <i>J Physiol (Lond)</i> 1997; 498 :817–23.
33 34 35 36	731 732 733	36	Hanajima R, Ugawa Y, Terao Y, <i>et al.</i> Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. <i>J Physiol (Lond)</i> 1998; 509 :607–18. doi:10.1111/j.1469-7793.1998.607bn.x
37 38 39 40	734 735 736	37	Ziemann U, Chen R, Cohen LG, <i>et al.</i> Dextromethorphan decreases the excitability of the human motor cortex. <i>Neurology</i> 1998; 51 :1320–4. doi:10.1212/WNL.51.5.1320
41 42 43	737 738	38	Ziemann U. TMS and drugs. <i>Clinical Neurophysiology</i> 2004; 115 :1717–29. doi:10.1016/j.clinph.2004.03.006
44 45 46 47	739 740 741	39	Di Lazzaro V, Oliviero A, Meglio M, <i>et al.</i> Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. <i>Clin Neurophysiol</i> 2000; 111 :794–9.
48 49 50 51	742 743 744	40	Di Lazzaro V, Pilato F, Dileone M, <i>et al.</i> GABAA receptor subtype specific enhancement of inhibition in human motor cortex. <i>J Physiol (Lond)</i> 2006; 575 :721–6. doi:10.1113/jphysiol.2006.114694
52 53 54 55 56 57	745 746 747	41	Ilić TV, Meintzschel F, Cleff U, <i>et al.</i> Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. <i>J Physiol (Lond)</i> 2002; 545 :153–67. doi:10.1113/jphysiol.2002.030122
57 58 59 60			https://mc.manuscriptcentral.com/jnnp

1		
-	48 42	Werhahn KJ, Kunesch E, Noachtar S, <i>et al.</i> Differential effects on motorcortical
	49 50	inhibition induced by blockade of GABA uptake in humans. <i>J Physiol (Lond)</i> 1999; 517 :591–7. doi:10.1111/j.1469-7793.1999.0591t.x
7 75		Sanger TD, Garg RR, Chen R. Interactions between two different inhibitory
9 75	52 53	systems in the human motor cortex. <i>J Physiol (Lond)</i> 2001; 530 :307–17. doi:10.1111/j.1469-7793.2001.0307I.x
10 11 74	54 44	Mariorenzi R, Zarola F, Caramia MD, et al. Non-invasive evaluation of central
12 74	55	motor tract excitability changes following peripheral nerve stimulation in
13 75 14 75	56	healthy humans. Electroencephalogr Clin Neurophysiol 1991;81:90–101.
15 75	57 45	Delwaide PJ, Olivier E. Conditioning transcranial cortical stimulation (TCCS)
	58	by exteroceptive stimulation in parkinsonian patients. Adv Neurol
18 75	59	1990; 53 :175–81.
19 20 76	60 46	Tokimura H, Di Lazzaro V, Tokimura Y, <i>et al.</i> Short latency inhibition of human
21 76	61	hand motor cortex by somatosensory input from the hand. <i>J Physiol (Lond)</i>
22 76 23	62	2000; 523 :503–13.
24 76	63 47	Di Lazzaro V, Oliviero A, Pilato F, et al. Motor cortex hyperexcitability to
-	64	transcranial magnetic stimulation in Alzheimer's disease. <i>J Neurol Neurosurg</i>
26 76 27	65	<i>Psychiatr</i> 2004; 75 :555–9. doi:10.1136/jnnp.2003.018127
28 76	66 48	Pascual-Leone A, Tormos JM, Keenan J, et al. Study and modulation of
	67	human cortical excitability with transcranial magnetic stimulation. <i>Journal of</i>
31	68	Clinical Neurophysiology 1998; 15 :333–43.
22	69 49	Pascual-Leone A, Valls-Solé J, Wassermann EM, et al. Responses to rapid-
33 77 34 77	70	rate transcranial magnetic stimulation of the human motor cortex. <i>Brain</i> 1994; 117 :847–58. doi:10.1093/brain/117.4.847
35	/1	1994, 117 .047–30. doi:10.1093/brain/117.4.047
27	72 50	Huang Y-Z, Edwards MJ, Rounis E, et al. Theta Burst Stimulation of the
38 //	73 74	Human Motor Cortex. <i>Neuron</i> 2005; 45 :201–6. doi:10.1016/j.neuron.2004.12.033
39 ⁷⁷ 40 ₇₅	/4	doi: 10.1010/j.hedron.2004.12.005
41	75 51	Siebner HR. Patients with focal arm dystonia have increased sensitivity to
42 77	76 77	slow-frequency repetitive TMS of the dorsal premotor cortex. <i>Brain</i> 2003; 126 :2710–25. doi:10.1093/brain/awg282
43 / , 44	//	2003, 120 .27 10–23. doi: 10. 1030/brain/awg202
45 77	78 52	Huang Y-Z, Rothwell JC, Edwards MJ, <i>et al.</i> Effect of physiological activity on
	79 80	an NMDA-dependent form of cortical plasticity in human. <i>Cereb Cortex</i> 2008; 18 :563–70. doi:10.1093/cercor/bhm087
47 70	80	
	81 53	Legon W, Dionne JK, Staines WR. Continuous theta burst stimulation of the
	82 83	supplementary motor area: effect upon perception and somatosensory and motor evoked potentials. <i>Brain Stimul</i> 2013; 6 :877–83.
	84	doi:10.1016/j.brs.2013.04.007
53		
	85 54 86	Stinear CM, Barber PA, Coxon JP, <i>et al.</i> Repetitive stimulation of premotor cortex affects primary motor cortex excitability and movement preparation.
56 78	80 87	<i>Brain Stimul</i> 2009; 2 :152–62. doi:10.1016/j.brs.2009.01.001
57 58		
59		
60		https://mc.manuscriptcentral.com/jnnp

2			
2 3 4 5 6	788 789 790	55	Arasanz CP, Staines WR, Roy EA, <i>et al.</i> The cerebellum and its role in word generation: a cTBS study. <i>Cortex</i> 2012; 48 :718–24. doi:10.1016/j.cortex.2011.02.021
7 8 9 10	791 792 793	56	Bolton DAE, Staines WR. Age-related loss in attention-based modulation of tactile stimuli at early stages of somatosensory processing. <i>Neuropsychologia</i> 2012; 50 :1502–13. doi:10.1016/j.neuropsychologia.2012.03.002
11 12 13 14	794 795 796	57	Cirillo G, Di Pino G, Capone F, <i>et al.</i> Neurobiological after-effects of non- invasive brain stimulation. <i>Brain Stimul</i> 2017; 10 :1–18. doi:10.1016/j.brs.2016.11.009
15 16 17	797 798	58	Hallett M. Transcranial Magnetic Stimulation: A Primer. <i>Neuron</i> 2007; 55 :187–99. doi:10.1016/j.neuron.2007.06.026
18 19 20	799 800	59	Rossi S, Hallett M, Rossini PM, <i>et al.</i> Clinical Neurophysiology. <i>Clinical Neurophysiology</i> 2009; 120 :2008–39. doi:10.1016/j.clinph.2009.08.016
21 22 23	801 802	60	Oberman LM, Pascual-Leone A. Report of seizure induced by continuous theta burst stimulation. <i>Brain Stimul</i> 2009; 2 :246–7. doi:10.1016/j.brs.2009.03.003
24 25 26 27	803 804 805	61	Schulze-Bonhage A, Scheufler K, Zentner J, <i>et al.</i> Safety of single and repetitive focal transcranial magnetic stimuli as assessed by intracranial EEG recordings in patients with partial epilepsy. <i>J Neurol</i> 1999; 246 :914–9.
28 29 30 31 32	806 807 808	62	Boutros NN, Berman RM, Hoffman R, <i>et al.</i> Electroencephalogram and repetitive transcranial magnetic stimulation. <i>Depress Anxiety</i> 2000; 12 :166–9. doi:10.1002/1520-6394(2000)12:3<166::AID-DA8>3.0.CO;2-M
32 33 34 35	809 810	63	Sutter R, Rüegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs. <i>Neurology</i> 2015;85:1332–41. doi:10.1212/WNL.0000000000002023
36 37 38 39	811 812 813	64	Machii K, Cohen D, Ramos-Estebanez C, <i>et al.</i> Safety of rTMS to non-motor cortical areas in healthy participants and patients. <i>Clin Neurophysiol</i> 2006; 117 :455–71. doi:10.1016/j.clinph.2005.10.014
40 41 42 43 44	814 815 816 817	65	Loo CK, Mitchell PB. A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. <i>J Affect Disord</i> 2005; 88 :255–67. doi:10.1016/j.jad.2005.08.001
45 46 47 48 49	818 819 820 821	66	Janicak PG, O'Reardon JP, Sampson SM, <i>et al.</i> Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. <i>J Clin Psychiatry</i> 2008; 69 :222–32.
50 51 52 53 54 55	822 823 824 825	67	BSE NV, Mirando D, PhD KAP-B, <i>et al.</i> Assessment of Vascular Stent Heating with Repetitive Transcranial Magnetic Stimulation. <i>Journal of Stroke and Cerebrovascular Diseases</i> 2017; 26 :1121–7. doi:10.1016/j.jstrokecerebrovasdis.2016.12.030
56 57 58	826	68	Hsieh T-H, Dhamne SC, Chen J-JJ, <i>et al.</i> Minimal heating of aneurysm clips
59 60			https://mc.manuscriptcentral.com/jnnp

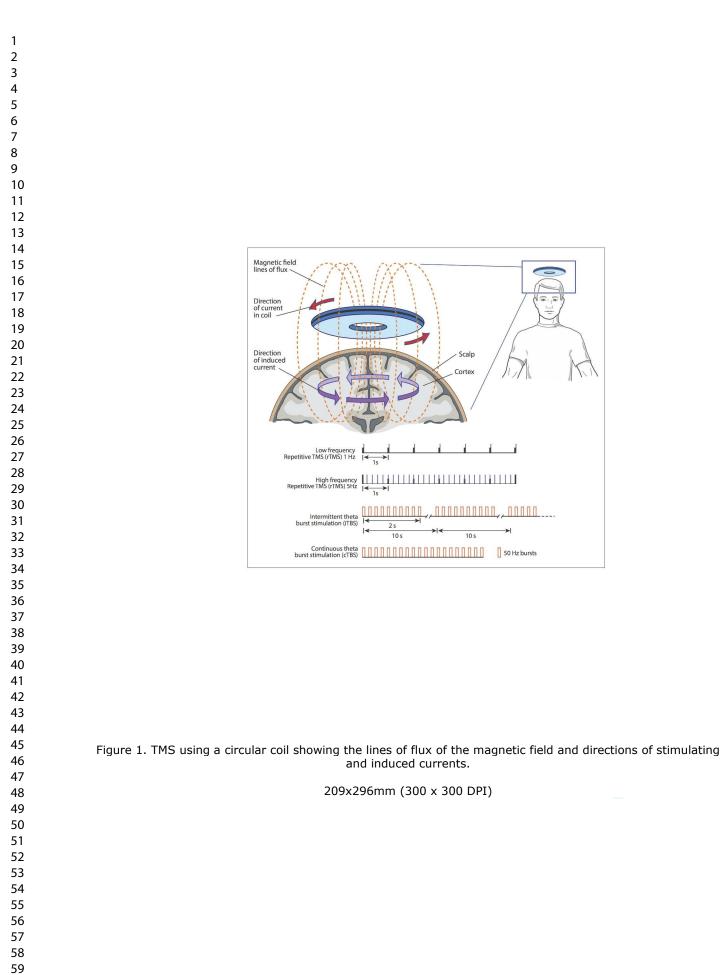
1 2		
3 82	27 28	during repetitive transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> 2012; 123 :1471–3. doi:10.1016/j.clinph.2011.10.048
6 82	29 69 30	Kiernan MC, Vucic S, Cheah BC, <i>et al.</i> Amyotrophic lateral sclerosis. 2011; 377 :942–55. doi:10.1016/S0140-6736(10)61156-7
9 83 10 83	31 70 32 33	Vucic S, Ziemann U, Eisen A, <i>et al.</i> Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. <i>J Neurol Neurosurg Psychiatr</i> 2013; 84 :1161–70. doi:10.1136/jnnp-2012-304019
13 83 14 83	34 71 35 36	Mills KR, Nithi KA. Corticomotor threshold is reduced in early sporadic amyotrophic lateral sclerosis. <i>Muscle Nerve</i> 1997; 20 :1137–41. doi:10.1002/(SICI)1097-4598(199709)20:9<1137::AID-MUS7>3.0.CO;2-9
18 19 83	37 72 38	Eisen A, Weber M. The motor cortex and amyotrophic lateral sclerosis. <i>Muscle Nerve</i> 2001; 24 :564–73.
21 84	39 73 40	Menon P, Kiernan MC, Vucic S. Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. <i>Clinical Neurophysiology</i> 2015; 126 :803–9.
25 84	41 74 42 43	Vucic S, Nicholson GA, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. <i>Brain</i> 2008; 131 :1540–50. doi:10.1093/brain/awn071
28 84 29 84	44 75 45 46	Vucic S, Kiernan MC. Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. <i>J Neurol Neurosurg Psychiatr</i> 2007; 78 :849–52. doi:10.1136/jnnp.2006.105056
32 84 33 84	47 76 48 49	Vucic S, Kiernan MC. Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. <i>Clinical Neurophysiology</i> 2008; 119 :1088–96. doi:10.1016/j.clinph.2008.01.011
36 84 37 85	50 77 51 52	Vucic S, Cheah BC, Yiannikas C, <i>et al.</i> Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia. <i>Brain</i> 2010; 133 :2727–33. doi:10.1093/brain/awq188
40 83 41 83	53 78 54 55	Eisen A, Braak H, Del Tredici K, <i>et al.</i> Cortical influences drive amyotrophic lateral sclerosis. <i>J Neurol Neurosurg Psychiatr</i> 2017; 88 :917–24. doi:10.1136/jnnp-2017-315573
46 84 47 84	56 79 57 58	Zhang J, Ji B, Hu J, <i>et al.</i> Aberrant interhemispheric homotopic functional and structural connectivity in amyotrophic lateral sclerosis. <i>J Neurol Neurosurg Psychiatr</i> 2017; 88 :369.1–370. doi:10.1136/jnnp-2016-314567
50 80 51 80	59 80 60 61	Vucic S, Lin CS-Y, Cheah BC, <i>et al.</i> Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. <i>Brain</i> 2013; 136 :1361–70. doi:10.1093/brain/awt085
54 80 55 80 56 80 57	62 81 63 64 65	Menon P, Geevasinga N, Yiannikas C, <i>et al.</i> Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. <i>Lancet Neurol</i> 2015; 14 :478–84. doi:10.1016/S1474-4422(15)00014-9
58 59 60		https://mc.manuscriptcentral.com/jnnp

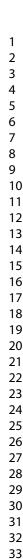
2 3 4 5 6	866 867 868	82	Cheah BC, Lin CS-Y, Park SB, <i>et al.</i> Progressive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. <i>Clin Neurophysiol</i> 2012; 123 :2460–7. doi:10.1016/j.clinph.2012.06.020
7 8 9	869 870	83	Scarmeas N, Hadjigeorgiou GM, Papadimitriou A, <i>et al.</i> Motor signs during the course of Alzheimer disease. <i>Neurology</i> 2004; 63 :975–82.
10 11 12	871 872	84	Grothe MJ, Barthel H, Sepulcre J, <i>et al.</i> In vivo staging of regional amyloid deposition. <i>Neurology</i> 2017; 89 :2031–8. doi:10.1212/WNL.000000000004643
13 14 15	873 874	85	Cantone M, Di Pino G, Capone F, <i>et al.</i> Clinical Neurophysiology. <i>Clinical Neurophysiology</i> 2014; 125 :1509–32. doi:10.1016/j.clinph.2014.04.010
16 17 18 19	875 876 877	86	Ferreri F, Pauri F, Pasqualetti P, <i>et al.</i> Motor cortex excitability in Alzheimer's disease: A transcranial magnetic stimulation study. <i>Ann Neurol</i> 2002; 53 :102–8. doi:10.1002/ana.10416
20 21 22 23	878 879 880	87	Sevilla DF, Cabezas C, Prada ANO, <i>et al.</i> Selective muscarinic regulation of functional glutamatergic Schaffer collateral synapses in rat CA1 pyramidal neurons. <i>J Physiol (Lond)</i> 2002; 545 :51–63. doi:10.1113/jphysiol.2002.029165
24 25 26 27	881 882 883	88	Niskanen E, Könönen M, Määttä S, <i>et al.</i> New Insights into Alzheimer's Disease Progression: A Combined TMS and Structural MRI Study. <i>PLoS ONE</i> 2011; 6 :e26113–8. doi:10.1371/journal.pone.0026113
28 29 30 31 32	884 885 886	89	Ferreri F, Vecchio F, Vollero L, <i>et al.</i> Sensorimotor cortex excitability and connectivity in Alzheimer's disease: A TMS-EEG Co-registration study. <i>Hum Brain Mapp</i> 2016; 37 :2083–96. doi:10.1002/hbm.23158
33 34 35	887 888	90	Liepert J, Bär KJ, Meske U, <i>et al.</i> Motor cortex disinhibition in Alzheimer's disease. <i>Clinical Neurophysiology</i> 2001; 112 :1436–41.
36 37 38 39	889 890 891	91	Brem A-K, Atkinson NJ, Seligson EE, <i>et al.</i> Differential pharmacological effects on brain reactivity and plasticity in Alzheimer's disease. <i>Front Psychiatry</i> 2013; 4 :124. doi:10.3389/fpsyt.2013.00124
40 41 42 43	892 893 894	92	Di Lazzaro V, Oliviero A, Tonali PA, <i>et al.</i> Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. <i>Neurology</i> 2002; 59 :392–7.
44 45 46 47	895 896 897	93	Nardone R, Bergmann J, Kronbichler M, <i>et al.</i> Abnormal short latency afferent inhibition in early Alzheimer's disease: a transcranial magnetic demonstration. <i>J Neural Transm</i> 2008; 115 :1557–62. doi:10.1007/s00702-008-0129-1
48 49 50 51 52	898 899 900	94	Di Lazzaro V, Oliviero A, Tonali PA, <i>et al.</i> Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. <i>Neurology</i> 2002; 59 :392–7.
53 54	901 902	95	McCormick DA, Prince DA. Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. <i>J Physiol (Lond)</i> 1986; 375 :169–94.
55 56 57 58	903	96	Müller CM, Singer W. Acetylcholine-induced inhibition in the cat visual cortex is
59 60			https://mc.manuscriptcentral.com/jnnp

2			
3 4	904		mediated by a GABAergic mechanism. <i>Brain Res</i> 1989; 487 :335–42.
5 6 7 8	905 906 907	97	Di Lazzaro V, Pilato F, Dileone M, <i>et al.</i> In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. <i>Neurology</i> 2006; 66 :1111–3. doi:10.1212/01.wnl.0000204183.26231.23
9 10 11	908 909	98	Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer's disease. 1976; 2 :1403.
12 13 14 15	910 911 912	99	Nardone R, Marth R, Ausserer H, <i>et al.</i> Reduced short latency afferent inhibition in patients with Down syndrome and Alzheimer-type dementia. <i>Clin Neurophysiol</i> 2006; 117 :2204–10. doi:10.1016/j.clinph.2006.07.134
16 17 18 19	913 914 915	100	Koch G, Di Lorenzo F, Bonnì S, <i>et al.</i> Impaired LTP- but not LTD-Like Cortical Plasticity in Alzheimer's Disease Patients. <i>Journal of Alzheimer's Disease</i> 2012; 31 :593–9. doi:10.3233/JAD-2012-120532
20 21 22 23	916 917 918	101	Battaglia F, Wang H-Y, Ghilardi MF, <i>et al.</i> Cortical Plasticity in Alzheimer's Disease in Humans and Rodents. <i>Biological Psychiatry</i> 2007; 62 :1405–12. doi:10.1016/j.biopsych.2007.02.027
24 25 26 27	919 920 921	102	Di Lorenzo F, Ponzo V, Bonnì S, <i>et al.</i> Long-term potentiation–like cortical plasticity is disrupted in Alzheimer's disease patients independently from age of onset. <i>Ann Neurol</i> 2016; 80 :202–10. doi:10.1002/ana.24695
28 29 30 31 32	922 923 924	103	Ridding MC, Inzelberg R, Rothwell JC. Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. <i>Ann Neurol</i> 1995; 37 :181–8. doi:10.1002/ana.410370208
33 34 35 36	925 926 927	104	Goldberg JA, Boraud T, Maraton S, <i>et al.</i> Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. <i>J Neurosci</i> 2002; 22 :4639–53.
37 38 39 40 41	928 929 930 931	105	Lefaucheur J-P. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson's disease: influence of antiparkinsonian treatment and cortical stimulation. <i>Clinical Neurophysiology</i> 2005; 116 :244–53. doi:10.1016/j.clinph.2004.11.017
42 43 44 45	932 933 934	106	Barbin L, Leux C, Sauleau P, <i>et al.</i> Non-homogeneous effect of levodopa on inhibitory circuits in Parkinson's disease and dyskinesia. <i>Parkinsonism Relat Disord</i> 2013; 19 :165–70. doi:10.1016/j.parkreldis.2012.08.012
46 47 48 49	935 936 937	107	Ni Z, Bahl N, Gunraj CA, <i>et al.</i> Increased motor cortical facilitation and decreased inhibition in Parkinson disease. <i>Neurology</i> 2013; 80 :1746–53. doi:10.1212/WNL.0b013e3182919029
50 51 52 53 54	938 939 940	108	MacKinnon CD, Gilley EA, Weis-McNulty A, <i>et al.</i> Pathways mediating abnormal intracortical inhibition in Parkinson's disease. <i>Ann Neurol</i> 2005; 58 :516–24. doi:10.1002/ana.20599
55 56 57 58	941 942	109	Kojovic M, Kassavetis P, Bologna M, <i>et al.</i> Transcranial magnetic stimulation follow-up study in early Parkinson's disease: A decline in compensation with
59 60			https://mc.manuscriptcentral.com/jnnp

2	943		disease progression? <i>Mov Disord</i> 2015; 30 :1098–106. doi:10.1002/mds.26167
3 4	943		disease progression? <i>NOV Disold</i> 2015, 30 .1098–100. doi.10.1002/mds.20107
5 6	944 945	110	Sailer A, Molnar GF, Paradiso G, <i>et al.</i> Short and long latency afferent inhibition in Parkinson's disease. <i>Brain</i> 2003; 126 :1883–94.
7 8	946		doi:10.1093/brain/awg183
9 10 11	947 948 949	111	Manganelli F, Vitale C, Santangelo G, <i>et al.</i> Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson's disease. <i>Brain</i> 2009; 132 :2350–5. doi:10.1093/brain/awp166
12 13 14 15	950 951 952	112	Celebi O, Temuçin CM, Elibol B, <i>et al.</i> Short latency afferent inhibition in Parkinson's disease patients with dementia. <i>Mov Disord</i> 2012; 27 :1052–5. doi:10.1002/mds.25040
16 17 18 19 20	953 954 955	113	Cincotta M, Borgheresi A, Balestrieri F, <i>et al.</i> Mechanisms underlying mirror movements in Parkinson's disease: A transcranial magnetic stimulation study. <i>Mov Disord</i> 2006; 21 :1019–25. doi:10.1002/mds.20850
21 22 23 24	956 957 958	114	Spagnolo F, Coppi E, Chieffo R, <i>et al.</i> Interhemispheric balance in Parkinson's disease: a transcranial magnetic stimulation study. <i>Brain Stimul</i> 2013; 6 :892–7. doi:10.1016/j.brs.2013.05.004
25 26 27 28	959 960 961	115	Schneider SA, Talelli P, Cheeran BJ, <i>et al.</i> Motor cortical physiology in patients and asymptomatic carriers of parkin gene mutations. <i>Mov Disord</i> 2008; 23 :1812–9. doi:10.1002/mds.22025
29 30 31 32 33	962 963 964	116	Ponzo V, Di Lorenzo F, Brusa L, <i>et al.</i> Impaired intracortical transmission in G2019S leucine rich-repeat kinase Parkinson patients. <i>Mov Disord</i> 2017; 32 :750–6. doi:10.1002/mds.26931
34 35 36 37	965 966 967	117	Rosas HD, Salat DH, Lee SY, <i>et al.</i> Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity. <i>Brain</i> 2008; 131 :1057–68. doi:10.1093/brain/awn025
38 39 40 41	968 969 970	118	Sax DS, Powsner R, Kim A, <i>et al.</i> Evidence of cortical metabolic dysfunction in early Huntington's disease by single-photon-emission computed tomography. <i>Mov Disord</i> 1996; 11 :671–7. doi:10.1002/mds.870110612
42 43 44 45	971 972 973	119	Thu DCV, Oorschot DE, Tippett LJ, <i>et al.</i> Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington's disease. <i>Brain</i> 2010; 133 :1094–110. doi:10.1093/brain/awq047
46 47 48 49	974 975 976	120	Rosas HD, Salat DH, Lee SY, <i>et al.</i> Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity. <i>Brain</i> 2008; 131 :1057–68. doi:10.1093/brain/awn025
50 51 52 53 54	977 978 979	121	Schippling S, Schneider SA, Bhatia KP, <i>et al.</i> Abnormal motor cortex excitability in preclinical and very early Huntington's disease. <i>Biological Psychiatry</i> 2009; 65 :959–65. doi:10.1016/j.biopsych.2008.12.026
55 56 57 58	980 981	122	Nardone R, Lochner P, Marth R, <i>et al.</i> Abnormal intracortical facilitation in early-stage Huntington's disease. <i>Clinical Neurophysiology</i> 2007; 118 :1149–54.
59 60			https://mc.manuscriptcentral.com/jnnp

1			28	3
2 3	982		doi:10.1016/j.clinph.2007.01.009	
6	983 1 984 985	123	Abbruzzese G, Buccolieri A, Marchese R, <i>et al.</i> Intracortical inhibition and facilitation are abnormal in Huntington's disease: a paired magnetic stimulation study. <i>Neurosci Lett</i> 1997; 228 :87–90.	I
9	986 1 987	124	Tippett LJ, Waldvogel HJ, Thomas SJ, <i>et al.</i> Striosomes and mood dysfunction in Huntington's disease. <i>Brain</i> 2007; 130 :206–21. doi:10.1093/brain/awl243	1
12	988 1 989	125	Wenning GK, Litvan I, Tolosa E. Milestones in atypical and secondary Parkinsonisms. <i>Mov Disord</i> 2011; 26 :1083–95. doi:10.1002/mds.23713	
15 16 17	990 1 991 992	126	Lee SE, Rabinovici GD, Mayo MC, <i>et al.</i> Clinicopathological correlations in corticobasal degeneration. <i>Ann Neurol</i> 2011; 70 :327–40. doi:10.1002/ana.22424	
20 21 22 23	993 1 994 995 996	127	Nagao S, Yokota O, Nanba R, <i>et al.</i> Progressive supranuclear palsy presenting as primary lateral sclerosis but lacking parkinsonism, gaze palsy, aphasia, or dementia. <i>J Neurol Sci</i> 2012; 323 :147–53. doi:10.1016/j.jns.2012.09.005	
26 27	997 1 998 999	128	Kühn AA, Grosse P, Holtz K, <i>et al.</i> Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. <i>Clin Neurophysiol</i> 2004; 115 :1786–95. doi:10.1016/j.clinph.2004.03.020	
30 1	000 1 001 002	129	Conte A, Belvisi D, Bologna M, <i>et al.</i> Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy. <i>Cereb Cortex</i> 2012; 22 :693–700. doi:10.1093/cercor/bhr149	
33 1 34 1	003 1 004 005	130	Wittstock M, Pohley I, Walter U, <i>et al.</i> Interhemispheric inhibition in different phenotypes of progressive supranuclear palsy. <i>J Neural Transm</i> 2013; 120 :453–61. doi:10.1007/s00702-012-0879-7	
37 1 38 1	006 1 007 008	131	Burrell JR, Hornberger M, Vucic S, <i>et al.</i> Apraxia and motor dysfunction in corticobasal syndrome. <i>PLoS ONE</i> 2014; 9 :e92944. doi:10.1371/journal.pone.0092944	
42 43 1	009 1 010 011	132	Burrell JR, Hornberger M, Vucic S, <i>et al.</i> Apraxia and Motor Dysfunction in Corticobasal Syndrome. <i>PLoS ONE</i> 2014; 9 :e92944. doi:10.1371/journal.pone.0092944	
47 1 48 1	012 1 013 014	133	Morita Y, Osaki Y, Doi Y. Transcranial magnetic stimulation for differential diagnostics in patients with parkinsonism. <i>Acta Neurol Scand</i> 2008; 118 :159–63. doi:10.1111/j.1600-0404.2007.00988.x	
51 1 52 1	015 1 016 017	134	Suppa A, Marsili L, Di Stasio F, <i>et al.</i> Primary motor cortex long-term plasticity in multiple system atrophy. <i>Mov Disord</i> 2014; 29 :97–104. doi:10.1002/mds.25668	
55 1	018 1 019 020	135	Marchese R, Trompetto C, Buccolieri A, <i>et al.</i> Abnormalities of motor cortical excitability are not correlated with clinical features in atypical parkinsonism. <i>Mov Disord</i> 2000; 15 :1210–4.	
58 59 60			https://mc.manuscriptcentral.com/jnnp	


2 3 4 5	1021 1022 1023	136	Papp MI, Lantos PL. The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. <i>Brain</i> 1994; 117 (Pt 2):235–43.
6 7 8 9 10	1024 1025 1026	137	Wolters A, Classen J, Kunesch E, <i>et al.</i> Measurements of transcallosally mediated cortical inhibition for differentiating parkinsonian syndromes. <i>Mov Disord</i> 2004; 19 :518–28. doi:10.1002/mds.20064
11 12 13 14	1027 1028 1029	138	Burrell JR, Halliday GM, Kril JJ, <i>et al.</i> The frontotemporal dementia-motor neuron disease continuum. 2016; 388 :919–31. doi:10.1016/S0140-6736(16)00737-6
15 16 17 18 19	1030 1031 1032 1033	139	Ahmed RM, Irish M, Piguet O, <i>et al.</i> Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. <i>Lancet Neurol</i> 2016; 15 :332–42. doi:10.1016/S1474-4422(15)00380-4
20 21 22 23	1034 1035 1036	140	Renton AE, Majounie E, Waite A, <i>et al.</i> A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. <i>Neuron</i> 2011; 72 :257–68. doi:10.1016/j.neuron.2011.09.010
24 25 26 27 28 29	1037 1038 1039 1040	141	DeJesus-Hernandez M, Mackenzie IR, Boeve BF, <i>et al.</i> Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. <i>Neuron</i> 2011; 72 :245–56. doi:10.1016/j.neuron.2011.09.011
30 31 32 33	1041 1042 1043	142	Neumann M, Sampathu DM, Kwong LK, <i>et al.</i> Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. <i>Science</i> 2006; 314 :130–3. doi:10.1126/science.1134108
34 35 36	1044 1045	143	Burrell JR, Kiernan MC, Vucic S, <i>et al.</i> Motor Neuron dysfunction in frontotemporal dementia. <i>Brain</i> 2011; 134 :2582–94. doi:10.1093/brain/awr195
37 38 39 40	1046 1047 1048	144	Elamin M, Bede P, Byrne S, <i>et al.</i> Cognitive changes predict functional decline in ALS: A population-based longitudinal study. <i>Neurology</i> 2013; 80 :1590–7. doi:10.1212/WNL.0b013e31828f18ac
41 42 43 44	1049 1050 1051	145	Lillo P, Mioshi E, Zoing MC, <i>et al.</i> How common are behavioural changes in amyotrophic lateral sclerosis? <i>Amyotrophic Lateral Sclerosis</i> 2010; 12 :45–51. doi:10.3109/17482968.2010.520718
45 46 47 48	1052 1053 1054	146	Lillo P, Mioshi E, Burrell JR, <i>et al.</i> Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. <i>PLoS ONE</i> 2012; 7 :e43993. doi:10.1371/journal.pone.0043993
49 50 51 52 53	1055 1056 1057	147	Benussi A, Di Lorenzo F, Dell'Era V, <i>et al.</i> Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. <i>Neurology</i> 2017; 89 :665–72. doi:10.1212/WNL.000000000004232
54 55 56 57	1058 1059	148	Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. <i>Ann Neurol</i> 2008; 63 :272–87. doi:10.1002/ana.21393
58 59 60			https://mc.manuscriptcentral.com/jnnp


1			
2 3	1060	149	Grefkes C, Ward NS. Cortical reorganization after stroke: how much and how
4	1061		functional? Neuroscientist 2014;20:56–70. doi:10.1177/1073858413491147
5 6	1062	150	Ward NS. Restoring brain function after stroke — bridging the gap between
7	1062	100	animals and humans. <i>Nat Rev Neurol</i> 2017; 13 :244–55.
8	1064		doi:10.1038/nrneurol.2017.34
9			
10 11	1065	151	Prabhakaran S, Zarahn E, Riley C, <i>et al.</i> Inter-individual variability in the
12	1066 1067		capacity for motor recovery after ischemic stroke. <i>Neurorehabil Neural Repair</i> 2008; 22 :64–71. doi:10.1177/1545968307305302
13	1007		2000,22.04-71. 001.10.117771343300307303302
14 15	1068	152	
15 16	1069		depends on corticomotor integrity. Ann Neurol 2015;78:848–59.
17	1070		doi:10.1002/ana.24472
18	1071	153	Stinear CM, Byblow WD, Ackerley SJ, et al. Predicting Recovery Potential for
19 20	1071	100	Individual Stroke Patients Increases Rehabilitation Efficiency. <i>Stroke</i>
20	1073		2017; 48 :1011–9. doi:10.1161/STROKEAHA.116.015790
22	1054	4 - 4	
23	1074 1075	154	Krakauer JW, Carmichael ST, Corbett D, <i>et al.</i> Getting neurorehabilitation right: what can be learned from animal models? 2012; 26 :923–31.
24 25	1075		doi:10.1177/1545968312440745
25	1070		
27	1077	155	
28	1078		declines with time after focal ischemic brain injury. J Neurosci 2004;24:1245-
29 30	1079		54. doi:10.1523/JNEUROSCI.3834-03.2004
30	1080	156	Zeiler SR, Hubbard R, Gibson EM, et al. Paradoxical Motor Recovery From a
32	1080	100	First Stroke After Induction of a Second Stroke: Reopening a Postischemic
33	1082		Sensitive Period. Neurorehabil Neural Repair 2016;30:794-800.
34 35	1083		doi:10.1177/1545968315624783
36	1004	457	Correlational CT. Drain evoltability in strakes the size and your of strake
37	1084 1085	157	Carmichael ST. Brain excitability in stroke: the yin and yang of stroke progression. Arch Neurol 2012;69:161–7. doi:10.1001/archneurol.2011.1175
38	1005		
39 40	1086	158	
40	1087		mediated tonic inhibition promotes functional recovery after stroke. Nature
42	1088		2010; 468 :305–9. doi:10.1038/nature09511
43	1089	159	Murase N, Duque J, Mazzocchio R, <i>et al.</i> Influence of interhemispheric
44 45	1009	100	interactions on motor function in chronic stroke. Ann Neurol 2004; 55 :400–9.
46	1091		doi:10.1002/ana.10848
47	1000	400	
48	1092	160	Duque J, Hummel F, Celnik P, <i>et al.</i> Transcallosal inhibition in chronic subcortical stroke. <i>NeuroImage</i> 2005; 28 :940–6.
49 50	1093 1094		doi:10.1016/j.neuroimage.2005.06.033
51	1071		doi. 10. 10 10/j.1100101110g0.2000.000
52	1095	161	Borich MR, Neva JL, Boyd LA. Evaluation of differences in brain
53	1096		neurophysiology and morphometry associated with hand function in individuals
54 55	1097		with chronic stroke. <i>Restor Neurol Neurosci</i> 2015; 33 :31–42. doi:10.3233/RNN-
56	1098		140425
57			
58 59			
59 60			https://mc.manuscriptcentral.com/jnnp

1			31
2 3 4 5 6	1099 1100 1101	162	Taub E, Uswatte G, King DK, <i>et al.</i> A placebo-controlled trial of constraint- induced movement therapy for upper extremity after stroke. <i>Stroke</i> 2006; 37 :1045–9. doi:10.1161/01.STR.0000206463.66461.97
7 8 9 10	1102 1103 1104	163	Mang CS, Borich MR, Brodie SM, <i>et al.</i> Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke. <i>Clin Neurophysiol</i> 2015; 126 :1959–71. doi:10.1016/j.clinph.2014.12.018
11 12 13 14	1105 1106 1107	164	McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: A meta-analysis. <i>Brain Stimul</i> 2017; 10 :721–34. doi:10.1016/j.brs.2017.03.008
15 16 17 18 19	1108 1109 1110 1111	165	Gerloff C, Bushara K, Sailer A, <i>et al.</i> Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. <i>Brain</i> 2006; 129 :791–808. doi:10.1093/brain/awh713
20 21 22 23 24	1112 1113 1114	166	Lotze M, Markert J, Sauseng P, <i>et al.</i> The Role of Multiple Contralesional Motor Areas for Complex Hand Movements after Internal Capsular Lesion. <i>J</i> <i>Neurosci</i> 2006; 26 :6096–102. doi:10.1523/JNEUROSCI.4564-05.2006
24 25 26 27 28	1115 1116 1117	167	Seghier ML, Patel E, Prejawa S, <i>et al.</i> The PLORAS Database: A data repository for Predicting Language Outcome and Recovery After Stroke. <i>NeuroImage</i> 2016; 124 :1208–12. doi:10.1016/j.neuroimage.2015.03.083
29 30 31 32 33	1118 1119 1120 1121	168	Boyd LA, Hayward KS, Ward NS, <i>et al.</i> Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. <i>International Journal of Stroke</i> 2017; 12 :480–93. doi:10.1177/1747493017714176
34 35 36 37	1122 1123 1124	169	Di Pino G, Pellegrino G, Assenza G, <i>et al.</i> Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. <i>Nat Rev Neurol</i> 2014; 10 :597–608. doi:10.1080/08990220220133261
38 39 40 41	1125 1126 1127	170	Delvaux V, Alagona G, Gérard P, <i>et al.</i> Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. <i>Clin Neurophysiol</i> 2003; 114 :1217–25.
42 43 44 45 46 47	1128 1129 1130 1131	171	Heald A, Bates D, Cartlidge NE, <i>et al.</i> Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. <i>Brain</i> 1993; 116 :1371–85.
47 48 49 50 51	1132 1133 1134	172	Stinear CM, Barber PA, Smale PR, <i>et al.</i> Functional potential in chronic stroke patients depends on corticospinal tract integrity. <i>Brain</i> 2007; 130 :170–80. doi:10.1093/brain/awl333
52 53 54	1135 1136	173	Trompetto C, Assini A, Buccolieri A, <i>et al.</i> Motor recovery following stroke: a transcranial magnetic stimulation study. <i>Clin Neurophysiol</i> 2000; 111 :1860–7.
55 56 57	1137 1138	174	Traversa R, Cicinelli P, Bassi A, <i>et al.</i> Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. <i>Stroke</i>
58 59 60			https://mc.manuscriptcentral.com/jnnp

2 3 113 4	9	1997; 28 :110–7.
5 114 6 114 7		Boniface SJ. Plasticity after acute ischaemic stroke studied by transcranial magnetic stimulation. <i>J Neurol Neurosurg Psychiatr</i> 2001; 71 :713–5.
7 8 114 9 114 10 114 11	3	Liepert J, Restemeyer C, Kucinski T, <i>et al.</i> Motor strokes: the lesion location determines motor excitability changes. <i>Stroke</i> 2005; 36 :2648–53. doi:10.1161/01.STR.0000189629.10603.02
12 114 13 114 14 114 15	6	Manganotti P, Patuzzo S, Cortese F, <i>et al.</i> Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. <i>Clin Neurophysiol</i> 2002; 113 :936–43.
16 114 17 114 18 114		Liepert J, Storch P, Fritsch A, <i>et al.</i> Motor cortex disinhibition in acute stroke. <i>Clin Neurophysiol</i> 2000; 111 :671–6.
191152011521115		Huynh W, Vucic S, Krishnan AV, <i>et al.</i> Longitudinal Plasticity Across the Neural Axis in Acute Stroke. 2012; 27 :219–29. doi:10.1177/1545968312462071
22 23 24 115 25 115	3	Di Lazzaro V, Oliviero A, Pilato F, <i>et al.</i> Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy. <i>Clin Neurophysiol</i> 2004; 115 :112–5.
26 27 115 28 115		Bütefisch CM, Netz J, Wessling M, <i>et al.</i> Remote changes in cortical excitability after stroke. <i>Brain</i> 2003; 126 :470–81.
29 30 115 31 115 32 115 33 116 34 116	8 9	Swayne OBC, Rothwell JC, Ward NS, <i>et al.</i> Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. <i>Cereb Cortex</i> 2008; 18 :1909–22. doi:10.1093/cercor/bhm218
35 116 36 116 37 116 38 116	2	Pennisi G, Rapisarda G, Bella R, <i>et al.</i> Absence of response to early transcranial magnetic stimulation in ischemic stroke patients: prognostic value for hand motor recovery. <i>Stroke</i> 1999; 30 :2666–70.
39 116 40 116 41 116		Shimizu T, Hosaki A, Hino T, <i>et al.</i> Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. <i>Brain</i> 2002; 125 :1896–907.
42 116 43 116 44		Fridman EA. Reorganization of the human ipsilesional premotor cortex after stroke. <i>Brain</i> 2004; 127 :747–58. doi:10.1093/brain/awh082
45 116 46 116 47 116 48 117	9	Catano A, Houa M, Caroyer JM, <i>et al.</i> Magnetic transcranial stimulation in non- haemorrhagic sylvian strokes: interest of facilitation for early functional prognosis. <i>Electroencephalogr Clin Neurophysiol</i> 1995; 97 :349–54.
49 50 117 51 117		Huynh W, Vucic S, Krishnan AV, <i>et al.</i> Exploring the Evolution of Cortical Excitability Following Acute Stroke. 2016; 30 :244–57. doi:10.1155/2011/614329
52 53 117 54 117 55 117 56 57 58	4	Stinear CM, Barber PA, Petoe M, <i>et al.</i> The PREP algorithm predicts potential for upper limb recovery after stroke. <i>Brain</i> 2012; 135 :2527–35. doi:10.1093/brain/aws146
59 60		https://mc.manuscriptcentral.com/jnnp

1			
2 3 4 5	1176 1177 1178	189	Stinear CM, Byblow WD, Ackerley SJ, <i>et al.</i> PREP2: A biomarker-based algorithm for predicting upper limb function after stroke. <i>Ann Clin Transl Neurol</i> 2017; 4 :811–20. doi:10.1002/acn3.488
6 7	1179		
8 9	1180		
10	1100		
11 12			
13			
14 15			
16			
17 18			
19 20			
21			
22 23			
24			
25 26			
27			
28 29			
30 31			
32			
33 34			
35			
36 37			
38 39			
40			
41 42			
43			
44 45			
46			
47 48			
49 50			
51			
52 53			
54			
55 56			
57			
58 59			
60			https://mc.manuscriptcentral.com/jnnp

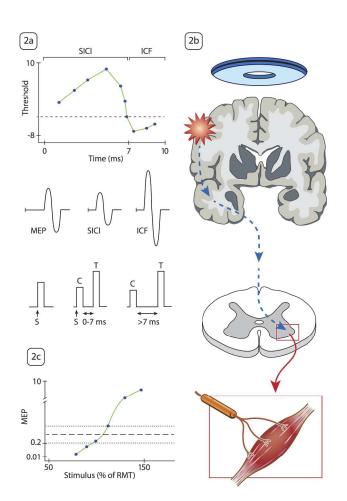
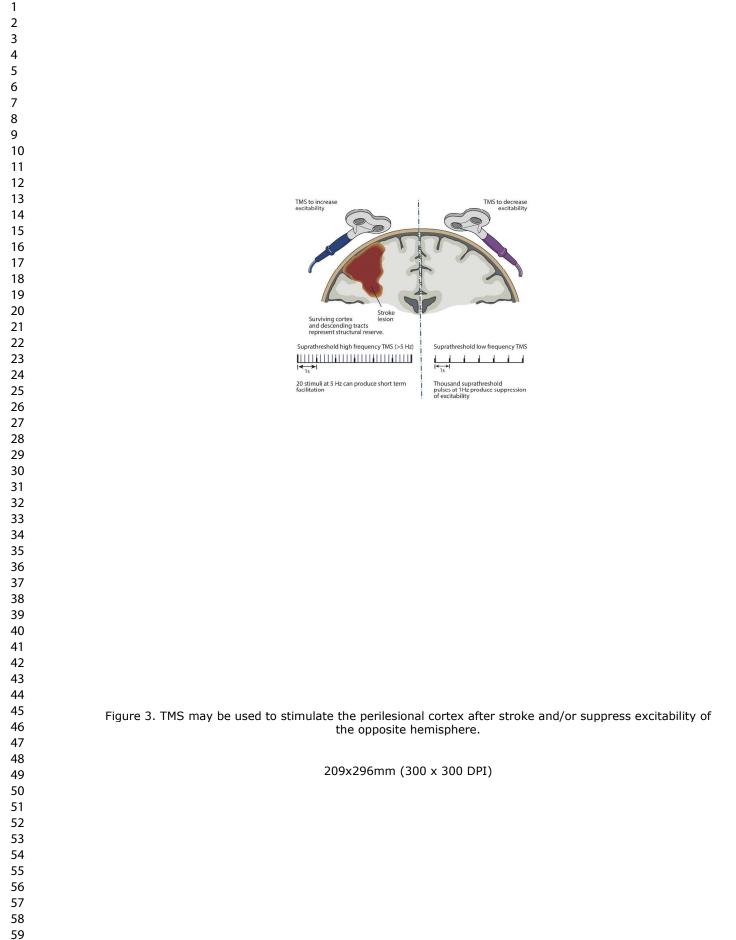



Figure 2. The paired-pulse threshold tracking TMS (TT-TMS) paradigm to measure cortical excitability. 2a) Short interval intracortical inhibition (SICI) occurs at an interstimulus interval (ISI) of 0-7 ms while intracortical facilitation (ICF) occurs at an ISI of 7-10 ms. 2b) TMS coil placed over the vertex stimulates the motor cortex and the response is recorded from the opposite abductor pollicis brevis muscle. 2c) Change in stimulus intensity required to achieve a target motor evoked potential (MEP) of 0.2 mV(±20%) is used to quantify the SICI and ICF.

296x420mm (300 x 300 DPI)

