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Multiphoton ionization and multiphoton resonances in the tunneling regime
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The rate of ionization of an atom of helium, argon, or hydrogen exposed to an intense monochromatic laser
field and the quasienergy spectrum of their dressed states are studied for values of the Keldysh parameter between
1 and 0.6 and wavelengths between 390 and 1300 nm. The calculations are carried out within the non-Hermitian
Floquet theory. Resonances with intermediate excited states significantly affect ionization from the dressed
ground state at all the intensities and all the wavelengths considered. The dressed excited states responsible for
these structures are large-α0 states akin to the Kramers-Henneberger states of the high-frequency Floquet theory.
Within the single-active-electron approximation, these large-α0 states become species independent at sufficiently
high intensity or sufficiently long wavelength. Apart for the resonance structures arising from multiphoton
coupling with excited states, the ab initio Floquet ionization rate is in excellent agreement with the predictions
of two different calculations in the strong field approximation, one based on a length-gauge formulation of this
approximation and one based on a velocity-gauge formulation. The calculations also confirm the validity of the
ω2 expansion as an alternative to the strong field approximation for taking into account the nonadiabaticity of the
ionization process in intense low-frequency laser fields.
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I. INTRODUCTION

One can broadly distinguish two dynamical regimes of
atomic multiphoton processes according to the value of the
Keldysh parameter γK [1]. For an atom (or ion) of binding
energy Ip,

γK = (2Ip)1/2ω/F0 (1)

if the field is linearly polarized and can be represented by the
electric field vector

F = F0 ẑ cos ωt. (2)

(We use atomic units throughout this article, except where
specified otherwise.) For γK � 1, the interaction of the
(classical) light field with the atom is best understood as
proceeding through the absorption and stimulated emission
of discrete photons, while for γK � 1 this interaction can
be seen as a perturbation of the atom by a slowly varying
quasistatic electric field. The latter regime is often referred to
as the “tunneling regime” and the former as the “multiphoton
regime.” The distinction between these two cases and the
underlying physical picture are grounded in an analysis of
multiphoton processes based on the strong field approxima-
tion (SFA). This theoretical approach has been immensely
successful in predicting and explaining all the main features
of a variety of multiphoton processes, in particular high-order
above-threshold ionization (HATI) and high-order harmonic
generation in strong infrared fields, and the SFA is central to
our present understanding of much of the subject [2].

Little is known about the spectrum and the importance
of multiphoton resonances between the ground state of the

atom and some of its excited states at the high intensities and
long wavelengths characteristic of the tunneling regime. It it
is often assumed that such resonances play little or no role
in these conditions. Indeed, theories based on the SFA are
generally in good agreement with experiment in this regime,
and these theories postulate that the initial state is coupled
only to the continuum by the field [3,4]. It is also often
assumed that any resonant excited state would be too broad
at the intensities involved for being of any significance. On
these premises, the ponderomotive streaking of excited states,
which yields series of sharp enhancements of ionization at
particular intensities in the multiphoton regime [5,6], should be
expected to be insignificant in the tunneling regime. However,
it has been known for some time that ab initio calculations
for long laser pulses may still show clear manifestations of
the ponderomotive streaking when γK � 1 [7]. In particular,
Parker et al. found series of resonance enhancements in
the rate of ionization of helium at 780-nm wavelength up
to the highest intensity they considered, 1.4 PW cm−2,
corresponding to γK = 0.4 [8,9]. These results were calculated
by directly solving the time-dependent Schrödinger equation
for flat-top pulses, both for the full two-electron problem
and for a single-active-electron model. Using the same time-
dependent approach in a study the HATI spectrum of helium at
800-nm wavelength, in the single-active-electron approxima-
tion, Muller had previously demonstrated that most of the
electrons contributing to the recollision plateau are emitted at
resonances [10,11]. In these calculations, the enhancements
coincided with the mixing of the ground state with uninden-
tified excited states, over narrow ranges of intensity, and they
remained prominent up to the highest intensity considered
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(0.6 PW cm−2, corresponding to γK = 0.6). Muller noted that
some of the excited states in question have a charge distribution
similar to that expected for a Kramers-Henneberger (KH)
state—i.e., a bound state supported by the “dressed potential”
which determines the dynamics of the electron in high-
frequency fields [12].

If we denote by W (r) the potential modeling the interaction
of the active electron with the core in the single-active-electron
approximation and by r the position of the electron with respect
to the nucleus, the dressed potential is

Wdr(r) = ω

2π

∫ π/ω

−π/ω

W (|r − α0 ẑ cos ωt |) dt (3)

for the field defined by Eq. (2). Wdr(r) depends on F0 and
on ω only through the parameter α0, which is the excursion
amplitude of an electron quivering freely in the field:

α0 = F0/ω
2. (4)

In the case of atomic hydrogen, W (r) ≡ −1/r and the bound
states supported by the corresponding dressed potential are
well known [12,13]. In the following we refer to these
hydrogen KH states as the Coulomb-KH states. The relevance
of Wdr(r) and of α0 for the ionization dynamics in the infrared
comes from the fact that most of the excited states to which
the ground state can resonantly couple have a binding energy
smaller than the photon energy and therefore behave as
predicted by the high-frequency Floquet theory [12] (except
when they interact with low-lying states). As the weakly
bound states quiver with amplitude α0 in the rest frame of
the nucleus, the long-range Coulomb tail of W (r) dominates
the dynamics of the electron when α0 is sufficiently large.
Hence, when α0 increases the highly excited states of the
atom converge to Coulomb-KH states, independently on the
species (provided the single-active-electron approximation
holds) [14]. The numerical examples given in Ref. [14] and in
this article show that the excited spectra of hydrogen, helium,
and argon differ greatly for α0 < 10 but are close to each other
for α0 >∼ 15. Moreover, in the large-α0 regime, the spectrum of
excited states depends on the intensity and on the wavelength
of the field primarily through the parameter α0. For instance,
we show in Sec. III that the spectrum of dressed excited states
of argon for a 1300 nm field of 80 TW cm−2 intensity (α0 = 39)
differs little from the corresponding spectrum of helium for a
800-nm field of 500 TW cm−2 intensity (α0 = 37).

It is worth noting that γK < 1 means that α0 >∼ 15 when
the wavelength is longer than about 500 nm in the case of
He or about 650 nm in the case of Ar (see Fig. 1). Hence, at
wavelengths in the infrared, the multiphoton resonances which
may play a role in the ionization from the ground state of these
species in the tunneling regime are necessarily resonances with
large-α0 states. This article aims at a better understanding of
this universal KH spectrum and of its relevance to ionization
in long laser pulses.

We tackle the problem within the non-Hermitian Floquet
approach, which provides a mathematically rigorous descrip-
tion of the interaction of an atom with a monochromatic laser
field based on complex dilation analyticity [15,16]. In this
approach, each bound state of the field-free atom turns into a
dressed state associated with a complex quasienergy, E, the
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FIG. 1. (Color online) Boundaries of the tunneling regime and
of the large-α0 regime. (Solid line) The intensity above which α0 >

15 a.u. (Short-dashed line) The intensity above which γK < 1 for He.
(Long-dashed line) The intensity above which γK < 1 for Ar.

imaginary part of which is related to the rate of ionization
from that state, �, by � = −2 Im E. The calculations do
not assume the strong-field approximation. They only yield
a total rate of ionization (the branching ratios into the different
ATI channels cannot be calculated for long-range potentials).
However, they make it possible to obtain the whole spectrum of
dressed excited states and therefore assign resonance structures
to particular intermediate states. Although we do not have
access to the ATI spectrum, we can gauge the importance
of the resonances by the amplitude of the enhancements and
dips they imprint on the rate of ionization from the ground
state. We present results for one-electron models of helium
and argon, for γK ≈ 1 down to γK ≈ 0.6. For helium, we
consider ionization at either 800-nm or 390-nm wavelengths,
in fields of up to 500 TW cm−2 at 800 nm and 3 PW cm−2 at
390 nm. The calculations at 390 nm are motivated by results
obtained by Parker et al. [8] for that particular wavelength.
For argon we consider instead ionization in a relatively weak
field of 80 TW cm−2 but for wavelengths ranging from
800 to 1300 nm. We also examine atomic hydrogen at 800 nm
for comparison with the helium results.

The Floquet results reported here invite a comparison
with the predictions of the SFA. To this effect, we have
also calculated the ionization rate within two variants of this
approximation, one based on the length-gauge formulation of
the theory and one based on the velocity-gauge formulation.
Importantly, we use the same single-active-electron model in
these calculations as in the full Floquet calculations, so discrep-
ancies between the corresponding rates can be entirely ascribed
to inaccuracies inherent to the approximations made in the
ionization dynamics in the SFA. The length-gauge formulation
is that developed by Perelomov, Popov, and Terent’ev [17,18],
modified to converge to an accurate rate in the adiabatic limit.
It relies, in effect, on an approximate saddle-point treatment of
the time integral defining the ionization amplitude in the SFA.
The velocity-gauge formulation is that developed by Faisal
[19] and by Reiss [20], and it treats the time integral exactly
(this integral is reduced to a generalized Bessel function which
can be calculated accurately). We use the correction proposed
by Becker et al. [21] for taking into account the effect of
the Coulomb interaction on the tunneling, which is essential
for a quantitative comparison. This correction is not rigorous,
but it is known to bring the Faisal-Reiss rate in excellent
agreement with benchmark results at much weaker intensities
than considered here [21].
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We also compare our full Floquet results to the predictions
of the ω2 expansion of Pont et al. [22,23]. In this approach, the
quasienergy E (and therefore the rate of ionization) is written
as a series in powers of the square of the angular frequency of
the laser field, namely

E =
∞∑

n=0

E(2n)ω2n. (5)

The zeroth order term in this expansion is the quasienergy in
the adiabatic approximation, Ead. The other terms correct this
approximation in a systematic way. This approach does not rely
on the SFA and offers an alternative to Keldysh’s theory for
the treatment of the nonadiabatic corrections. Its mathematical
properties are not well understood, however, in particular in
what concerns the effect of intermediate-state resonances on
the convergence of the expansion. From a numerical point of
view, the partial sums of the series have been found to settle
to a limit when more and more terms are taken into account,
and the convergence is faster at high intensity. For nonresonant
ionization of atomic hydrogen by a circularly polarized field,
the ω2 expansion is known to reproduce the Floquet rate well,
over a range of intensities and wavelengths [22]. For linear
polarization, the only comparison with accurate results made
so far has been limited to results in atomic hydrogen for a
616-nm field of intensity up to 3 × 1014 W cm2 [23]. Good
agreement was found in this case, too, apart for the absence of
any resonance structure in the rate obtained by summing the
first few terms of the expansion. In Sec. III, we compare the
rates of ionization obtained using this approach to the Floquet
rates and to those predicted by the SFA to widen the range of
systems for which the ω2 expansion has been tested against
other methods.

The different theoretical approaches considered in this
article are outlined in Sec. II. The results are presented and
discussed in Sec. III. Conclusions are given in Sec. IV.

II. METHOD

A. Floquet calculations

The Floquet calculations presented in this article have been
carried out using the same general approach as in Refs. [14,24]
and using the same numerical techniques as in Ref. [25].
In a few words, we work within the single-active-electron
approximation and represent the interaction of the electron
with the core by a model potential W (r), where r is the distance
to the nucleus. We also make the dipole approximation,
neglect spin-orbit coupling, and assume that the laser field
the atom is exposed to can be represented by Eq. (2). The
latter assumption makes it possible to seek Floquet solutions
of the time-dependent Schrödinger equation for the system,
namely solutions of the form

|�(t)〉 = e−iEt

∞∑
N=−∞

e−iNωt |FN 〉. (6)

The Fourier components |FN 〉 satisfy a set of coupled
time-independent equations, the “Floquet equations,” which
we solve in position space subject to Siegert boundary
conditions in the open channels. To this end, we expand the

harmonic components on a basis of spherical harmonics and of
complex radial Sturmian functions. We thereby represent the
Hamiltonian by a complex matrix. We find the coefficients
of the expansion and the quasienergies E by solving the
corresponding generalized eigenvalue problem numerically
using an Arnoldi algorithm. We eliminate spurious solutions
arising from numerical inaccuracies and solutions representing
approximate dressed continuum states by retaining only eigen-
solutions with quasienergies stable with respect to changes
of basis set. This approach is equivalent to diagonalizing
the complex-rotated Hamiltonian within the Balslev-Combes
theory of resonances [15]. The quasienergies it yields for
dressed bound states are complex: for each state, Im E =
−�/2, where � is the ionization width of the state. In atomic
units, � is also the total rate of ionization of the atom when
initially in that state. (This rate is thus obtained directly from
the quasienergy of the dressed state, and the calculation does
not involve an explicit summation of the contributions of the
individual ATI channels.)

We assume throughout this work that the laser field is
linearly polarized in the z direction. The dressed bound
states |�(t)〉 are therefore eigenvectors of the z component
of the orbital angular momentum operator and the field does
not couple states of different magnetic quantum numbers
m. The dressed bound states are also such that under a
reflection about the origin either |FN 〉 → (−1)N |FN 〉 or
|FN 〉 → −(−1)N |FN 〉 for all values of N . As in Ref. [14], we
distinguish these two parity classes by the quantum number σ

such that σ = 1 when |FN 〉 → (−1)N |FN 〉 and σ = −1 when
|FN 〉 → −(−1)N |FN 〉.

Equation (6) determines the quasienergies only within an
integer multiple of the photon energy. A same dressed state
|�(t)〉 is therefore associated with infinitely many quasiener-
gies of the form E = Eff + �ac + nh̄ω, n = 0, ± 1, ± 2, . . .,
where Eff is the energy of the field-free state and �ac is its
ac Stark shift. The corresponding solutions of the Floquet
equations belong to the same parity class when n is even
and to opposite parity classes when n is odd. The complete
bound-state quasienergy spectrum is therefore composed of
a double infinity of interlacing Brillouin zones, each zone
spanning a range of values of ReE of extension h̄ω and
repeating itself with period 2h̄ω. For convenience, we fold
the real part of the quasienergies into the interval [−h̄ω,0]
when plotting their spectrum. Hence, we work in terms of the
reduced quasienergy

E′ = (E mod h̄ω) − h̄ω (7)

instead of the quasienergy E defined by Eq. (6). Clearly,
Im E′ ≡ Im E. Moreover, there is no difference between E′
and E for the dressed states for which −h̄ω � Re E � 0,
i.e., for the dressed states from which the atom ionizes by
one-photon absorption. Unless forbidden by selection rules,
multiphoton resonance occurs between dressed states when
the real parts of their reduced quasienergies coincide.

We describe the interaction of the atom with the field in
the velocity gauge. In this formulation, the real part of the
quasienergies of the dressed highly excited states remains
almost constant when the intensity increases, while the real
part of the quasienergies of the states for which Ip � ω

053402-3



R. M. POTVLIEGE, E. MES. E, AND SVETLANA VUČIĆ PHYSICAL REVIEW A 81, 053402 (2010)

shifts downward by approximately −Up, where Up is the
ponderomotive energy [6]. One can thus write the ac Stark
shift of the dressed ground state in the form

�ac = −Up + δnp, (8)

and, except at anticrossings, |δnp| � Up. Throughout this
article we take the dressed ground state to be the dressed state
with the largest overlap with the field-free ground state. (This
state thus interchanges with the resonant dressed state where
their quasienergies anticross each other.)

We present results for atomic hydrogen, argon, and helium.
The potential W (r) representing the interaction of the active
electron with the core is simply −1/r in the case of hydrogen.
For the two complex atoms, we take W (r) to be of the form

W (r) = −1

r
[1 + Ae−αr + Be−βr + Cre−γ r ]. (9)

For argon we take A = 5.25, α = 0.97, B = 11.75, β =
3.7131, and C = 0 [26]. Apart for the deeply bound 1s,
2s, 2p, and 3s states supported by this potential, which
have no counterpart in the spectrum of the real atom, the
field-free energy levels of this model match the centroids of the
experimental fine-structure multiplets of the series, converging
to the 3p5 2P o

3/2 threshold. For helium, we take α = γ = 4 and
C = 2 and either A = 1.23 and B = 0 or A = 1, B = 0.903,
and β = 12. These two potentials are similar to the static
potential of He+, which was the model potential adopted in
Refs. [10,11]. The two sets of values of A, B, and β are
such that for either one the ground-state energy level in the
model differs from the exact value by less than 4 × 10−5 a.u.
All the He results presented below have been obtained using
the model potential for which A = 1.23 and B = 0. Because
the short-range part of the potential plays but a minor role
in the dynamical regime we examine in this article, we do not
expect significant differences with the results calculated using
the model potential for which A = 1, B = 0.903, and β = 12;
we have verified that this is indeed the case.

B. The ω2 expansion

Our calculations based on the ω2 expansion follow
Ref. [23]. Thus we express the laser electric field as F =
F0 ẑ cos τ , where ẑ is the unit vector in the z direction and
τ = ωt , and we introduce the Hamiltonian

Hdc(τ ) = H0 + F0z cos τ, (10)

where H0 denotes the Hamiltonian of the model atom in the
absence of field. For any value of τ , Hdc(τ ) is effectively
the Hamiltonian of the model atom in a static electric field
F0 ẑ cos τ . We define the state vectors |Fdc(τ )〉 and |F†

dc(τ )〉 as
the eigenvectors of Hdc(τ ) satisfying, respectively, outgoing
and ingoing Siegert boundary conditions and reducing to the
field-free ground state in the F0 → 0 limit. The corresponding
eigenenergies of Hdc(τ ) are respectively the complex dc
energy, Edc(τ ), and its conjugate, E∗

dc(τ ). We calculate these
quantities for the same model potentials as in the full Floquet
calculations and we use the same numerical methods (i.e.,
expansion on a complex Sturmian basis in position space and
solution of the resulting non-Hermitian generalized eigenvalue

problem). Having Edc(τ ) makes it possible to calculate the
quasienergy in the adiabatic approximation,

Ead = 1

2π

∫ π

−π

Edc(τ ) dτ, (11)

and therefore the ionization rate in the adiabatic approxima-
tion,

�ad = −2 Im Ead. (12)

The coefficients E(2n) of the expansion (5) are obtained
from the equation

E(2n) = 1

2π

∫ π

−π

Ẽ(2n)(τ ) dτ, (13)

where the functions Ẽ(2n)(τ ) are calculated as described in
Ref. [23]. In particular,

Ẽ(0)(τ ) = Edc(τ ), (14)

which implies that E(0) = Ead, and

Ẽ(2)(τ ) = −〈F†
dc(τ )| ∂

∂τ
Gdc(τ )

∂

∂τ
|Fdc(τ )〉. (15)

In this last equation,

Gdc(τ ) = Qdc(τ )

Edc(τ ) − Hdc(τ )
, (16)

with

Qdc(τ ) = 1 − |Fdc(τ )〉〈F†
dc(τ )|. (17)

Like Ẽ(2)(τ ), all the higher-order terms in the expansion (5)
can be derived from the dc state vectors |Fdc(τ )〉 and |F†

dc(τ )〉
and from the dc complex quasienergy Edc(τ ) [23]. As can
be expected given that the interaction potential F0z cos ωt is
invariant for ω → −ω, the expansion (5) does not contain
odd-order powers of ω.

The numerical calculation of the coefficients E(n) becomes
excessively demanding for n > 6, and for this reason we have
calculated the partial sums

Em =
m∑

n=0

E(n)ω2n (18)

only up to m = 6. The corresponding ionization rates, �0 ≡
�ad, �2, �4, and �6, with

�m = −2 Im Em, (19)

are discussed in Sec. III.

C. Methods based on the SFA

Rates of ionization calculated within the strong-field
approximation are also presented in Sec. III. We consider
two formulations of this approximation. In the first one,
the calculations are based on the analytical formula for the
photoelectron energy spectrum derived by Perelomov, Popov,
and Terent’ev [17,18] in their elaboration of Keldysh’s original
investigation [1]. For ionization from an (l,m = 0) state, the
corresponding ionization rate can be written as

�K (γK ) = (
1 + γ 2

K

)3/4
A(γK ) exp

[
− 2κ3

3F0
h(γK )

]
wad, (20)
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where κ = (2Ip)1/2,

h(γK ) = 3

2

1

γK

[(
1 + 1

2γ 2
k

)
arcsinh γK − 1

β

]
− 1 (21)

and

A(γK ) = β2

√
3π

∑
n>[ν]

exp[−α(n − ν)]FD(
√

β(n − ν)), (22)

with β = 2γK/(1 + γ 2
K )1/2, α = 2 arcsinh γK − β, and

ν = Ip

ω

(
1 + 1

2γ 2
K

)
= 1

ω
(Ip + Up). (23)

The function FD(x) is the Dawson integral,

FD(x) = exp(−x2)
∫ x

0
exp(t2) dt. (24)

It can be shown that A(γK ) → 1 and that

exp

[
− 2κ3

3F0
h(γK )

]
∼ exp

(
2κ3

3F0

1

10
γ 2

K

)
(25)

for γK → 0, hence that �K (γK → 0) = wad [1,17]. In terms
of the asymptotic coefficient Cκ0 in the definition of Ref. [27],

wad = (2Cκ0)2

(
6

π

)1/2

(2l + 1)

(
2κ3

F0

)2n∗−3/2

× exp

(
− 2κ3

3F0

)
Ip (26)

for detachment of an electron from an atom or a positive ion.
Here n∗ = Z/(2Ip)1/2, Z being the residual charge of the ionic
core.

As it is well known [28],

wad ≈ 1

2π

∫ π

−π

wdc(|F0 cos τ |) dτ (27)

for F0/κ
3 � 1, where wdc(F ) is the WKB rate of ionization

by a static electric field of strength F [29]:

wdc(F ) = (2Cκ0)2 (2l + 1)

(
2κ3

F

)2n∗−1

exp

(
−2κ3

3F

)
Ip.

(28)

The ionization rate wad is thus a weak-field approximation of
the adiabatic rate �ad defined by Eq. (12). We can therefore
expect that replacing wad by �ad in Eq. (20) would improve the
accuracy of the calculation. We refer to the resulting ionization
rate,

�MK(γK ) = (
1 + γ 2

K

)3/4
A(γK ) exp

[
− 2κ3

3F0
h(γK )

]
�ad,

(29)

as the modified Keldysh rate. For κ3/F0 � 1, �K (γK ) ≈
C(γK )wad, and �MK(γK ) ≈ C(γK )�ad when γK � 1, where

C(γK ) = exp

(
2κ3

3F0

1

10
γ 2

K

)
. (30)

We also present results obtained within Faisal’s and Reiss’s
velocity-gauge formulation of the SFA [19,20], corrected

for the Coulomb interaction between the photoelectron and
the ionic core as proposed by Becker et al. [21]. In
the single-active-electron approximation, the corresponding
Coulomb-corrected Faisal-Reiss rate for ionization from an S

state by the linearly polarized field (2) is [30]

�CCFR = 2πC2
∑
n>[ν]

∫
(Up − nω)2J 2

n

(
α0kn · ẑ;

Up

2ω

)

× |〈χ (kn)|φi〉|2|kn|dkn. (31)

In this equation, |k|n = [2(nω − Ip − Up)]1/2, the function
Jn(a,b) is the generalized Bessel function,

Jn(a; b) =
∞∑

p=−∞
Jn+2p(a)Jp(b), (32)

|φi〉 denotes the state vector of the field-free initial state, and
|χ (kn)〉 is the field-free plane wave of wave vector kn in the
normalization where 〈χ (k)|χ (k′)〉 = δ(k′ − k). The Coulomb
correction is effected by the factor C2: C2 = 1 for detachment
from a short-range potential while C2 = (κ3/F0)2n∗

for ion-
ization of an atom [21]. We evaluate the quantity 〈χ (kn)|φi〉 by
Fourier transforming the wave function of the field-free initial
state calculated using the model potentials and the basis set
method described in Sec. II A. Depending on its arguments,
we calculate the generalized Bessel function either by direct
summation or by using accurate asymptotics [31].

III. RESULTS AND DISCUSSION

A. The SFA and the ω2 expansion

We start by comparing the predictions of the ω2 expansion
to those of calculations based on the strong-field approxima-
tion. The rate of ionization from the ground state of He is
shown in Fig. 2 for two different wavelengths, 390 nm (blue
curves) and 800 nm (orange curves), and for intensities up to
2 × 1015 W cm−2. The Coulomb-corrected Faisal-Reiss rate
�CCFR, defined by Eq. (31), is given for both wavelengths.
The modified Keldysh rate �MK, defined by Eq. (29), is shown
only for 390 nm. In these two variants of the SFA, the rate of
ionization has a minimum at each multiphoton threshold, i.e.,
at each intensity at which an ATI channel closes. These channel
closures occur at intensities separated by 0.22 PW cm−2 at
390 nm and by 0.026 PW cm−2 at 800 nm (the difference
arises from the faster variation of Up at 800 nm). The drop at
the threshold is smaller at the longer wavelength, too, since at
a same intensity fewer ATI channels contribute to the total rate
at 390 nm than at 800 nm. The modified Keldysh rate varies
more smoothly than the Coulomb-corrected Faisal-Reiss rate
between thresholds. The complicated variation of the latter
is primarily due to the oscillations of the generalized Bessel
functions appearing in Eq. (31), not to multiphoton resonances
[32]. There is no such oscillations in the modified Keldysh rate.
However, apart for these fine details, the Coulomb-corrected
Faisal-Reiss rate and the modified Keldysh rate are in close
agreement with each other, both at 390 nm and at 800 nm. The
agreement shows that the choice of gauge is not critical in this
problem and confirms the validity of the Coulomb correction
proposed in Ref. [21].
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FIG. 2. (Color online) The rate of ionization from the ground
state of He vs. intensity in three different approximations. The rate
is multiplied by a factor of 100 where lower than 1 × 10−4 a.u.
(Thin solid curves) Rate predicted by the Coulomb-corrected Faisal-
Reiss approximation, �CCFR. (Thick solid curves) Rate calculated by
summing the ω2 expansion up to order ω6, �6. Results are shown
for 390-nm wavelength (upper curves) and for 800-nm wavelength
(lower curves). The blue circles represent the modified Keldysh rate,
�K (390 nm only).

In contrast to the SFA, the ω2 expansion yields rates varying
smoothly at thresholds. In the range of intensities spanned
by the figure, the expansion converges rapidly at 800 nm.
The speed at which the expansion converges increases with
intensity and, for a same intensity, is slower at 390 nm than at
800 nm (see Table I) [33]. However, it is fast enough even at
390 nm that above 0.3 PW cm−2 the rate obtained by summing
the expansion up to order ω6, �6, can be considered to be
converged for any practical purpose. Higher-order terms are
likely to be important at weaker intensities at 390 nm, as
shown by the large difference between the values of �4 and �6

at 0.2 PW cm−2 for that wavelength.
Also noteworthy is the agreement between the predictions

of the SFA and of the ω2 expansion in regards to the overall
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FIG. 3. (Color online) The rate of ionization from the dressed
ground state of argon at an intensity of 80 TW cm−2 vs. the wavelength
of the field. (Short-dashed line) Adiabatic rate, �ad. (Long-dashed and
solid curves) Results obtained by summing the ω2 expansion up to
order ω2 and up to order ω6, respectively. (Blue circles) Modified
Keldysh rate.

magnitude of the rate (see Fig. 2). These two approaches are
particularly close at low intensity. The agreement gradually
deteriorates as the intensities increases above 1.5 PW cm−2,
which is the critical intensity for over-the-barrier ionization.

The two approaches are also compared in Fig. 3 for
the case of ionization from the ground state of argon by a
strong midinfrared laser field. As in Ref. [34], the intensity
is set at 8 × 1013 W cm−2 and the wavelength varies up to
3600 nm. Again, one can note the close agreement between
the SFA and the ω2 expansion and the rapidity with which the
latter converges at the longest wavelength (compare �6 to �2

and �0).
The convergence of the SFA and of the ω2 expansion

to the adiabatic rate as the wavelength increases is also in
line with Keldysh’s analysis of the decrease in importance
of the nonadiabatic effects for decreasing values of γK [1].
In Fig. 3, γK = 0.29 at 3600 nm. If one takes only the most
important nonadiabatic correction to the adiabatic rate into
account, namely, since κ3/F0 � 1, the factor C(γK ) defined
by Eq. (30), the Keldysh theory predicts that the ionization rate
for the 3600 nm field should be 16% larger than in the adiabatic
approximation. Almost exactly the same result is obtained
from the ω2 expansion: at this wavelength, �6 is 15% larger

TABLE I. The rate of ionization from the ground state of He, in a.u., as obtained by summing the ω2 expansion to zeroth,
second, fourth, and sixth order in ω at four different intensities. The numbers between brackets indicate the powers of 10.

I �0 �2 �4 �6

Wavelength: 390 nm
0.2 PW cm−2 1.69(−9) 1.79(−8) 7.33(−8) 1.53(−7)
0.3 8.27(−8) 5.11(−7) 1.24(−6) 1.66(−6)
0.5 3.96(−6) 1.34(−5) 1.94(−5) 1.96(−5)
1.0 1.80(−4) 3.17(−4) 3.27(−4) 3.25(−4)

Wavelength: 800 nm

0.2 PW cm−2 1.69(−9) 5.53(−9) 8.67(−9) 9.74(−9)
0.3 8.27(−8) 1.85(−7) 2.26(−7) 2.31(−7)
0.5 3.96(−6) 6.20(−6) 6.54(−6) 6.54(−6)
1.0 1.80(−4) 2.13(−4) 2.13(−4) 2.13(−4)
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FIG. 4. (Color online) The ratio of the ionization rate predicted
by the ω2 expansion, �6, to the adiabatic ionization rate, �0 ≡ �ad,
for ionization from the ground state of helium in strong laser fields
of 390 nm or 800 nm wavelength, and for ionization from the ground
state of atomic hydrogen at 800 nm. The dotted curves show the
corresponding results in the Keldysh theory taking into account only
the leading nonadiabatic correction to �ad, namely the factor C(γK )
defined by Eq. (30).

than �ad. There is also a good agreement between the SFA
and the ω2 expansion on the magnitude of the nonadiabatic
corrections at the shorter wavelengths and stronger fields
considered in Fig. 2, although the factor C(γK ) significantly
overestimates these corrections when γK ≈ 1 (see Fig. 4). We
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FIG. 5. (Color online) The (σ = 1,m = 0) quasienergy spectrum
of helium at 390-nm wavelength. The dressed ground state sweeps
through resonance with the (σ = 1,m = 0) dressed excited states
five times in the range of intensities spanned by the figure; the letters
(a) to (e) identify the corresponding sequences of crossings. No results
are shown below the dash-dotted line, which indicates the Re E =
−h̄ω threshold. (Dashed curves) The energies of the four lowest σg

Coulomb-KH states [13]. The numbers are labels identifying Floquet
states for reference in the text.

surmise from these results that the ω2 expansion, truncated to
its first few terms, corrects the adiabatic quasienergy only for
the nonadiabatic nature of the tunneling stage of ionization in
an oscillating field, and not for the presence of multiphoton
resonances and of multiphoton thresholds.

B. Multiphoton resonances in intense fields

1. Quasienergy spectrum

As noted in Sec. II, the solutions of the Floquet equations
divide into symmetry classes identified by the parity quantum
number σ and (for linear polarization) the magnetic quantum
number m. A large section of the (σ = 1,m = 0) quasienergy
spectrum of He at a wavelength of 390 nm is shown in
Fig. 5 for intensities between 1 × 1015 and 3 × 1015 W cm−2.
The corresponding results for a wavelength of 800 nm
and intensities between 1 × 1014 and 5 × 1014 W cm−2 are
shown in Fig. 6. The spectrum of atomic hydrogen is also
shown in Fig. 6. In both figures, each dot represents the real part
of a calculated quasienergy folded into the interval [−h̄ω,0], as
defined by Eq. (7). An infinity of dressed Rydberg states accu-
mulate under the ionization threshold, i.e., at ReE just below
0, and consequently this region is omitted from the diagrams.

The real part of the quasienergy of the dressed ground state
varies (almost) linearly with intensity. It shifts downward with
respect to the continuum threshold. Its trajectory can be traced
by the oblique rectilinear alignments of data points streaking
the spectrum periodically. The dressed excited states it may
interact with swap between the (σ = 1,m = 0) symmetry
and the (σ = −1,m = 0) symmetry at each crossing of a
multiphoton threshold. Accordingly, in Figs. 5 and 6 the
dressed ground state is shown only in the intervals of intensity
where it becomes resonant with the (σ = 1,m = 0) states. The
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FIG. 6. (Color online) As in Fig. 5 but for a wavelength of 800 nm.
The (σ = 1,m = 0) quasienergy spectrum of hydrogen is also shown
(large green dots). Three of the eight sequences of crossings the
dressed ground state of He has with the (σ = 1,m = 0) dressed
excited states between 100 and 500 TW cm−2 are shown and are
identified by the labels (a) to (c); for clarity, the other five sequences
of crossings are not represented.
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resonances occur where the curves described by the real part
of the quasienergies of the dressed excited states cross that
described by the real part of the quasienergy of the dressed
ground state (within an integer multiple of the photon energy).
These crossings are direct (i.e., they are not avoided) in the
spectrum of helium shown in Fig. 6. However, a number of
avoided crossings involving the dressed ground state are visible
in the spectrum of hydrogen shown in the same diagram as well
as in the spectrum of helium shown in Fig. 5.

All the dressed excited states found in this work can ionize
by absorption of a single photon, both at 390 nm and at 800 nm.
The predictions of the high-frequency Floquet theory are thus
relevant as far as these states are concerned. In particular, and
as long as the single-active-electron approximation holds, one
should expect (1) that the quasienergy levels depend primarily
on the excursion amplitude α0 = F0/ω

2, and consequently
that fields of different intensities and wavelengths but same
values of α0 give rise to similar excited quasienergy spectra;
and (2) that these spectra should be close to the bound state
spectrum of the dressed potential Wdr(r). The parameter α0

varies between 12 and 21 a.u. in the range of intensity spanned
by Fig. 5 and between 16 and 37 a.u. in that spanned by Fig. 6.
Since for α0 � 0 a loosely bound electron has little probability
to be in the region of space where the short-range part of
the atomic potential is significant, the spectrum of dressed
excited states becomes species independent at sufficiently high
intensities [14]. The similarity between the excited spectra of
helium and atomic hydrogen shown in Fig. 6 is an example
of this general trend. (Significant discrepancies can be noticed
near 100 TW cm−2, but, except at avoided crossings with the
dressed ground state, the two spectra are almost identical above
350 TW cm−2.)

At the intensities considered, α0 is also sufficiently large
that the general structure of the spectrum is the same in
Figs. 5 and 6. One can distinguish three interlaced Rydberg
series of dressed excited states, namely a series of states that
shift smoothly upward (e.g., the states labeled 1, 4, and 7 in
Fig. 6), a series of states that shift less overall but have rapid
variations over narrow ranges of intensity (e.g., States 2, 3, 5,
and 8), and, starting at Re E′ ≈ −0.02 a.u. at 800 nm (above
300 TW cm−2), another series of states that shift little with
respect to the continuum threshold (e.g., States 6 and 9). In
Figs. 5 and 6, and throughout the rest of this article, the states
are labeled according to their large α0 limit, not their zero-field
limit, and in the same way at all wavelengths. For example,
State 3 in Fig. 5 maps to State 3 in Fig. 6 if the wavelength is
changed from 390 nm to 800 nm and similarly for the other
states. As we will see below, at 800 nm States 2, 3, 5, and 8
have a larger ionization width than most of the other dressed
excited states in this region of the spectrum (with the exception
of State 1). It has been observed in calculations on other
species that states with a large ionization width can interact
with even broader dressed states and as a result shift rapidly
in narrow intervals of intensity [14]. Such interactions with
states not shown in Fig. 6 may thus explain the complicated
behavior of the quasienergy of States 2, 3, 5, and 8. (While
we are confident to have found all the dressed excited states
with an ionization width smaller than 0.01 a.u., it is possible
that broader states are also present—e.g., the dressed 2s and
2p states and, possibly, light-induced states [14].)
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FIG. 7. (Color online) The rates of ionization from the dressed
excited states of He shown in Fig. 6. The red curves are the rates for
States 1–4.

Given their symmetry, the dressed excited states shown
in Figs. 5 and 6 should converge in quasienergy to the σg

Coulomb-KH states (in the terminology of Ref. [13]). The four
lowest of the latter are represented by dashed curves in these
two diagrams. The quasienergy curves which have these four
Coulomb-KH curves for the high-frequency limit are those of
States 1, 2, 3, and 4. As should be expected, these four dressed
states are closer to the four Coulomb-KH states at 390 nm
(Fig. 5) than at 800 nm (Fig. 6). That State 1 coincides with
the second lowest Coulomb-KH state in Fig. 6 is an accident:
this is State 2, not State 1, which converges to the second
lowest Coulomb-KH state in the high-frequency limit.

Our results are also consistent with the prediction of the
high-frequency Floquet theory that the dressed states for which
−h̄ω < Re E < 0 become stable against ionization in the large
α0 limit [12]. This strong-field stabilization here manifests by
an overall decrease in the rate of ionization from the dressed
excited states, as is clearly shown by Fig. 7. For instance,
the rate of ionization from State 4 decreases by a factor 7
between 100 and 500 TW cm−2. However, stabilization is not
monotonical and is not as rapid for all the states. In particular,
for States 2, 3, 5, and 8 ionization is significantly enhanced
in certain intervals of intensity. The enhancements coincide
with the intermitent, rapid variation of the real part of their
quasienergy mentioned above. The dressed 7im=0 state differs
from the other dressed states represented in Fig. 7 in having
an ionization rate which is markedly lower in weak fields
(3 × 10−5 a.u. at 100 TW cm−2) and which increases (almost)
monotonically between 100 and 500 TW cm−2. The low rate of
ionization in weak fields is expected for states of large orbital
angular momentum, as those states are not strongly coupled to
the continuum. Whether this particular dressed state would not
stabilize in sufficiently strong fields, in violation of the general
prediction of the high-frequency Floquet theory, cannot be
ascertained from our numerical results; however, it is likely
that it eventually would, since it mixes with other bound states
and looses its identity as the intensity increases. It has been
observed that the intensity at which stabilization sets in tends
to increases with the angular momentum of the state [35], and
the absence of a sustained decrease in the rate of ionization
from the dressed 7im=0 state in Fig. 7 may mean that this state
reaches the stabilization regime only above 500 TW cm−2 at
800 nm.
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FIG. 8. (Color online) The rate of ionization from the dressed
ground state of He over the three ranges of intensities for which this
state is shown in Fig. 6, vs. the real part of its quasienergy. The
wavelength is 800 nm. (Solid black curves) Full Floquet calculation.
(Dotted curves) Coulomb-corrected Faisal-Reiss theory. (Solid gray
curves) Results obtained by summing the ω2 expansion up to order ω6.
The crosses indicate the positions of the resonances and the horizontal
bars the ionization widths of the corresponding dressed excited states
at their crossing with the dressed ground state. (The vertical positions
of these markers are arbitrary.) The numbers identify the states as per
Fig. 6.

2. Ionization rate

The rate of ionization from the dressed ground state of He
at 800 nm wavelength is shown in Fig. 8, for the sequences
of crossings identified by the letters (a), (b), and (c) in Fig. 6.
To facilitate the comparison, the ionization rate is plotted as a
function of the real part of the ground-state quasienergy (with
the latter folded into the interval [−h̄ω,0]). The intensity thus
increases from right to left. It varies from 215 to 236 TW cm−2

in Fig. 6(a), from 319 to 340 TW cm−2 in Fig. 6(b), and from
422 to 443 TW cm−2 in Fig. 6(c), which correspond to values
of the Keldysh parameter γK of about 0.95, 0.79, and 0.69,
respectively. The number of photons the atom must absorb to
be ionized from the dressed ground state is 25 in Fig. 6(a), 29
in Fig. 6(b), and 33 in Fig. 6(c).

A number of resonance enhancements of the ionization rate
are visible in these diagrams. To make it easier to correlate
these enhancements with the quasienergy spectrum, a cross
is plotted at each value of ReE′ at which the dressed ground

state is resonant with a dressed excited state in Fig. 6. For each
resonance, the ionization width of the latter, �exc, is indicated
by an horizontal bar of length �exc centered on the cross.
We see that most crossings are associated with a discernible
structure in the rate, sometimes a modest enhancement or
a shoulder, sometimes a prominent peak. In all cases where a
structure is associated with a single crossing, the width of this
structure matches the ionization width of the corresponding
excited state. (For the crossings covered by the figure, the
resonant excited states are all much broader than the ground
state. If the opposite was the case, we would instead expect
that the width of the resonance structure matches the width of
the ground state.) The general reduction in the widths of the
excited states as the intensity increases comes out clearly if one
compares the three panels. One can also notice similarities in
the way states belonging to a same series of dressed excited
states affect ionization from the ground state: States 6 and 9
are both associated with sharp enhancements while States 1, 4,
and 7 are not associated with any visible resonance structures
or only with minor enhancement. We surmise from this that
states from the latter series are more weakly coupled to the
ground state by the field than those of the series States 6 and 9
belong to.

While the absolute magnitude of the enhancements in-
creases from Fig. 8(a) to Fig. 8(c), their relative magnitude
tends to decrease. The difference is marked for the enhance-
ment associated with State 3. However, even at the intensities
considered in (c) (γK ≈ 0.69), the resonances with the states
crossed at ReE′ ≈ −0.015 a.u. still enhance the rate by about
50% while that with State 6 enhances the rate by a factor of 2.

We also compare, in Fig. 8, the exact Floquet ionization
rate to the predictions of the strong-field approximation (in
the Coulomb-corrected Faisal-Reiss formulation) and of the
ω2 expansion. As noted in Sec. III A, at the intensities and
wavelength considered, �6 (represented by the thick gray
curves in the diagram) may be taken to be representative of
the predictions of this theory. The predictions of the Coulomb-
corrected SFA are similar to those of the ω2 expansion, with
the former giving slightly larger rates (except immediately
above the multiphoton thresholds, where in the SFA the
ionization rate drops owing to closure of the lowest ATI
channel). As found at lower intensities [21,23], both the ω2

expansion and the Coulomb-corrected SFA yield ionization
rates in good general agreement with the exact Floquet rates.
However, they are larger than the “baseline” of the resonance
peaks modulating the latter. We also note that, contrary to the
predictions of SFA, the enhancements of ionization found in
the Floquet calculations are all correlated with resonances with
intermediate excited states.

Although hydrogen and helium have similar spectra of
quasienergies when α0 is large, the way in which the rate of
ionization from the ground state is affected by the resonances
with the dressed excited states differs between these two
species. To establish this, we show, in Fig. 9, how the
hydrogen rate varies between 100 TW cm−2 (γK = 1.1) and
300 TW cm−2 (γK = 0.62). The wavelength is 800 nm. The
calculation could not resolve the accumulation of crossings
with dressed Rydberg states at intensities immediately above
those at which the dressed ground state passes a multiphoton
threshold. These regions are shaded in the figure. Where
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FIG. 9. (Color online) The rate of ionization from the ground state
of atomic hydrogen at 800-nm wavelength. (Green curve) Results
of the Floquet calculation. (Thick gray curve) Results obtained
by summing the ω2 expansion up to order ω6 [23]. The shaded
regions cover the regions in which unresolved dressed Rydberg states
accumulate.

calculated, the rate shows a number of strong resonance
features originating from the interaction of the ground state
with moderately excited states. Hydrogen having a smaller
binding energy, its rate of ionization is larger than that of
helium. They differ by five orders of magnitude at 200 TW
cm−2 for that wavelength, which means that the width of the
dressed ground state is comparable to or exceeds the widths
of most of the resonant dressed excited states. Consequently,
a number of their crossings with the dressed ground state are
avoided, not direct. In Fig. 9, these avoided crossings result
in discontinuities in the ionization rate and gaps at intensities
where the dressed ground state cannot be identified. They can
be seen in the hydrogen spectrum of Fig. 6 even at intensities
as high as 460 TW cm−2 (γK = 0.50). We also note from Fig. 9
that at the highest intensities resonances with the more highly
excited states tend to suppress ionization rather than increase
it. This reduction is not surprising since in such strong fields
many of these excited states are more stable against ionization
than the ground state. For example, at around 290 TW cm−2,
the ground state is resonantly coupled to the dressed 6s state
by 20-photon absorption. Immediately outside the crossing
the ionization rate from the 6s state is only a quarter of that
from the ground state, with the consequence that at the very
crossing, where the two states mix strongly, the ground-state
rate is reduced.

The ionization rate predicted by the ω2 expansion, �6,
is also represented in Fig. 9. As for helium at the same
wavelength, this approximation reproduces the exact Floquet
rate well, apart for the absence of enhancements and drops
where the ground dressed state interacts with excited states.

We now come back to ionization from the ground state
of helium at 390 nm. This system is of particular interest in
the context of the present work because the time-dependent
calculations of Ref. [8] indicate a marked reduction of the
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FIG. 10. (Color online) The rate of ionization from the dressed
ground state of He over the five sequences of crossings labeled (a)
to (e) in Fig. 5, vs. the real part of its quasienergy. The wavelength
is 390 nm. (Dotted curves) Coulomb-corrected Faisal-Reiss theory.
(Thick solid gray curves) Results obtained by summing the ω2

expansion up to order ω6. The other curves show the results of
the full Floquet calculation. The Floquet results are discontinuous
at avoided crossings with dressed excited states. The arrows indicate
the resonance structures associated with the crossings between the
dressed ground state and State 1.

amplitude of the resonance structures above 2 PW cm−2. We
show the Floquet rate of ionization in Fig. 10, for the five
series of crossings visible in Fig. 5. From Figs. 10(a) to 10(e),
the Keldysh parameter varies from around 0.93 to around
0.56, and the number of photons the atom must absorb to
be ionized increases from 13 to 21. The rate of ionization
from the ground state is about the same as in Fig. 9 (i.e., it is
three or four orders of magnitude larger here than in Fig. 6),
with the same consequence that many of its crossings with
dressed excited states are avoided. In Fig. 10(a), resonances
with excited states normally enhance ionization and, close to
the threshold, give rise to sharp Fano profiles. This variation is
typical of the multiphoton regime for the case where the ground
state has a smaller ionization width than most or all the excited
states it interacts with. The picture changes gradually as the
intensity increases, and in Fig. 10(e) we mostly find avoided
crossings and a reduction of ionization at the resonances, not
an enhancement. Also, the widths of the resonance structure
becomes dominated by the width of the ground state rather than
the widths of the excited states, as the former increases with
intensity while the latter generally decrease. The change in the
resonance structure associated with the crossing with State 1
is an example of the general trend: going from Fig. 10(a) to
Fig. 10(e), the resonance first produces a sharper and sharper
enhancement of ionization, and then an avoided crossing and
a reduction of ionization.
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FIG. 11. (Color online) The rate of ionization from the ground
state of He at 390-nm wavelength as a function of the intensity. (Solid
black curve) Results of the time-dependent calculations of Ref. [8].
(Blue curves) Present results, rescaled in intensity as described in the
text. The Floquet rate is represented by a solid curve in the range of
intensity where the dressed ground state sweeps through resonance
with dressed excited states of (σ = 1,m = 0) symmetry and by a
dotted curve in between. The labels (a) to (e) refer to the sequences
of crossings shown in Fig. 5.

As in Fig. 9, the ionization rate predicted by the ω2

expansion is in good overall agreement with the exact Floquet
rate, except where resonances dominate the latter. The SFA
tends to overestimate the ionization rate but rarely by more than
50%. The agreement of the Coulomb-corrected Faisal-Reiss
rate with the exact Floquet rate is as good in Fig. 10(e) as
in Fig. 10(a), although in Fig. 10(e) the intensity of the field
(about 2.8 PW cm−2) is almost twice the critical intensity for
over-the-barrier ionization (1.5 PW cm−2).

Finally, we compare the rate of ionization of helium shown
in Fig. 10 to the results of Parker et al. [8]. These authors calcu-
lated the ionization rate by solving the full two-electron time-
dependent Schrödinger equation ab initio, for a flat-top pulse,
at 60 different intensities ranging from almost 0 to 3.4 PW
cm−2. The rate was then obtained at intermediate intensities
using a one-electron model of the atom, the parameters of this
model being chosen so that the one-electron calculations repro-
duced the two-electron results at the intensities where the latter
where available. The resulting time-dependent rates are com-
pared to the Floquet rates in Fig. 11 for intensities ranging from
1 to 3 PW cm−2. The dressed excited states the dressed ground
state is resonant with alternate between the (σ = 1,m = 0)
symmetry and the (σ = −1,m = 0) symmetry a the intensity
increases. The Floquet rate is indicated by a dotted curve in the
intensity regions in which σ = −1. In the range of intensities
spanned by the figure, the regions in which σ = 1 are the same
as those for which the rate is shown in Fig. 10. (The rate is
plotted as a function of ReE′ in Fig. 10 and as a function of in-
tensity in Fig. 11.) The Floquet rate is discontinuous at avoided
crossings and is not calculated where the dressed ground state
encounters closely spaced dressed Rydberg states.

The intensities at which multiphoton resonances occur
depend on the nonponderomotive part of the ac Stark shift of
the ground state with respect to the continuum threshold—i.e.,
the quantity δnp defined by Eq. (8)—although at 390 nm this
nonponderomotive contribution accounts for less than 1% of
the total shift. We infer from Ref. [9] that δnp is a factor

1.8 larger in the model used in these calculations than in
the present work. This difference can be compensated by
multiplying the intensity by a constant scaling factor when
plotting the Floquet results, since both δnp and the total ac
Stark shift are approximately proportional to the intensity. The
correction amounts to a reduction of the intensity by 0.93%.
As can be seen from Fig. 11, the agreement between the two
calculations on the positions of the resonance enhancements is
excellent when this scaling is applied, despite the differences
in the underlying models. The Floquet rate is smaller than the
time-dependent rate by a constant factor close to 1.6; however,
the difference would be less if we were to multiply the former
by a factor of 2 to account for the presence of two equivalent
electrons in the ground state of the atom. A more significant
discrepancy between the two sets of results is that the rate of
ionization predicted by the time-dependent calculation does
not dip in the same way as the Floquet rate where the ground
state sweeps through resonance with highly excited states. This
discrepancy may arise from the population of dressed excited
states during the turn-on of the field in the time-dependent
calculations: if there is a significant admixture of dressed
excited states decaying more rapidly than the dressed ground
state in the wave function, which is not unlikely in the regions
of avoided crossings, the decay of the population in the vicinity
of the nucleus may reflect ionization from these excited states
more than ionization from the ground state. Since the ground
state is deduced from this decay, the dips at the resonances with
Rydberg states may be masked. However, further work on the
relationship between the two approaches would be useful in
order to elucidate the origin of this discrepancy.

We conclude from Figs. 10 and 11 that the reduction
in the amplitude of the resonance enhancements above
2 PW cm−2 found in the time-dependent calculations [8] is
not due to a reduction in the interaction of the dressed ground
state with dressed excited states. To the contrary, it is clear
from the Floquet results that such resonances can still be
expected to affect ionization from the ground state significantly
at intensities well above 2.5 PW cm−2.

C. Multiphoton resonances in strong midinfrared fields

Turning to longer wavelengths, we now focus on the
ionization of argon at an intensity of 8 × 1013 W cm−2 and
at wavelength of 1300 nm. Although the intensity is weaker
than those considered above, α0 ≈ 39 a.u. here. To achieve
such a large value of the excursion amplitude, a 800-nm
field should have an intensity of 5.5 × 1014 W cm−2 and
a 390-nm field an intensity of 9.8 × 1015 W cm−2. In the
same time, the wavelength is still sufficiently short that the
photon energy is larger than the binding energy of most of
the low-lying dressed excited states and of all the higher-lying
ones (ω = 0.035 a.u. at 1300 nm). As far as these dressed
states are concerned, and apart for occasional interactions
with deeply bound states, the field is thus strong and its
frequency is high. We should therefore expect that the excited
quasienergy spectrum is similar to that found in the previous
section for similarly large values of α0. That this is indeed
the case can be seen from Fig. 12, which shows how the
(σ = 1,m = 0) spectrum evolves as the wavelength increases
from 800 nm to 1300 nm, the intensity being kept fixed. While
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800 1050 1300
Wavelength (nm)

-0.04

-0.03

-0.02

-0.01
R

e 
E

 (
a.

u.
)

3

4

5
6

7
8

  

  
  

9

FIG. 12. (Color online) The (σ = 1,m = 0) quasienergy spec-
trum of argon at 80 TW cm−2 intensity vs. wavelength. No results are
shown below the dash-dotted line, which indicates the Re E = −h̄ω

threshold. The dressed ground state is not represented.

there are significant difference below 850 nm (α0 = 17 a.u.),
the structure of the spectrum becomes very similar to that
found above 150 TW cm−2 in Fig. 6. In particular, most of
the large-α0 states of Fig. 6 are easily identified in Fig. 12.
However, States 1 and 2, for which Re E < −0.035 a.u., are
absent at 1300 nm.

The dressed excited states the ground state may become
resonant with when the intensity varies around 80 TW cm−2

are thus large-α0 states at 1300 nm. As shown by Fig. 13,
their crossings with the dressed ground state produce a clear
series of resonance enhancements in the total ionization
rate. However, these enhancements tend to be significantly
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FIG. 13. (Color online) The rate of ionization from the dressed
ground state of argon vs. the real part of its quasienergy, at 1300-nm
wavelength for intensities between 77 and 81 TW cm−2 (lower
curve) and at 800-nm wavelength for intensities between 78 and
91 TW cm−2 (upper curve). The crosses and horizontal bars (shown
only for Re E < −0.01 a.u.) indicate the positions of the resonances
and the ionization widths of the corresponding dressed excited states
at their crossings with the dressed ground state. (Thick gray curve)
Ionization rate obtained by summing the ω2 expansion up to order ω6

(1300 nm only). The numbers identify the resonant dressed states as
per Fig. 12.

weaker than at 800 nm for similar intensities. The overall
magnitude of the rate is also smaller, in agreement with Fig. 3.
Nonetheless, at both wavelength, avoided crossings with very
narrow dressed states give rise to sharp resonance structures
close to threshold. The 1300-nm argon results of Fig. 13 are
comparable to the 800-nm helium results of Fig. 8(b) in that
γK ≈ 0.79 in both cases and that the resonant dressed excited
states are the same large-α0 states. The order of the ionization
process is similar, too: it takes thirty 1300-nm photons to
ionize argon at 80 TW cm−2, and twenty-nine 800-nm photons
to ionize helium at 330 TW cm−2. Comparing Fig. 13 to
Fig. 8(b), we see that the relative magnitude of the resonance
enhancements is similar in both systems, despite the difference
in the intensity, and that States 3, 5, and 8 have a larger
ionization width than States 4, 6, 7, and 9 both in argon at
1300 nm and in helium at 800 nm.

As found for the other systems studied in this work,
we see that the ionization rate of argon at 1300 nm is
also correctly predicted by the ω2 expansion (apart for the
resonance structures). On this ground, we expect that the ω2

expansion is reliable at still longer wavelengths, and therefore
that the overall magnitude of the Floquet ionization rate deeper
in the infrared is given by the solid curve of Fig. 3 (i.e., �6).
Because the basis set required by a Floquet calculation at
80 TW cm−2 becomes excessively large, we cannot gauge the
importance of the resonances with dressed excited states much
above 1300 nm. However, one can expect that they become
negligible at much longer wavelengths, since these resonances
would normally be with large-α0 KH states, that the spatial
extension of these states increases with α0, and therefore that
the strength of their coupling with the ground state should
vanish in the long wavelength limit.

IV. CONCLUSIONS

In conclusion, we have studied the spectrum of the dressed
excited states the ground state may be resonant with when
γK � 1. We have shown that at wavelengths in the visible
or the infrared these dressed excited states are predominantly
large-α0 states akin to the high-frequency KH states supported
by the dressed Coulomb potential and that these states undergo
strong-field stabilization when the intensity increases. For a
given, large value of α0, and within the single-active-electron
approximation, their spectrum has the same structure for all
atoms. For instance, we have shown that the spectrum of
the dressed excited states of argon in a field of 1300-nm
wavelength and 80 TW cm−2 intensity is similar to the
spectrum of the dressed excited states of helium in a field of
800-nm wavelength and 500 TW cm−2 intensity. Our results
indicate that the large-α0 states group into several series
differing by their Stark shift and by their coupling with the
dressed ground state.

We have calculated the rate of ionization in a monochro-
matic laser field for hydrogen and for one-electron models of
helium and argon, without making simplifying assumptions
on the dynamics of the process. We have found that the
importance of the resonances in the ionization from the ground
state tends to decrease for increasing values of α0. This
happens, presumably, because of the concomitant reduction
in the spatial overlap of the wave functions of the ground state
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and of the resonant dressed excited states. However, interaction
with the latter may still affect ionization from the ground state
significantly. In particular, we have found that both in hydrogen
at 800 nm and in helium at 390 nm the ground state undergoes
multiple avoided crossings with excited states at intensities for
which γK ≈ 0.6, and that their interaction often results in a
reduction rather than an enhancement of ionization. A similar
reduction is not present in the corresponding time-dependent
results of Parker et al. [8], although the two calculations
are in excellent agreement on the positions of the resonance
enhancements. Further work would be desirable to understand
the origin of this discrepancy.

Besides the ab initio Floquet calculations, we have also
obtained the ionization rate within the strong-field approxima-
tion, both in its length gauge (Keldysh) formulation and its
velocity gauge (Faisal-Reiss) formulation, as well as within
the ω2-expansion theory of Pont et al. [22,23]. For the same
model potential, and except where multiphoton resonances
are important, these four different approaches all yield total
ionization rates in good quantitative agreement with each other

at the intensities and wavelengths considered in this article.
The results show that the choice of gauge is not critical in the
calculation of the ionization rate in the SFA, in the present
context, and they confirm the usefulness of the Coulomb
correction proposed by Becker et al. [21]. They also indicate
that the ω2 expansion, truncated to its first few terms, gives a
good description of the nonadiabatic nature of the tunneling
state of ionization in a strong low-frequency laser field.
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