35 research outputs found

    Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail radix balthica (Pulmonata, Basommatophora)

    Get PDF
    Background: Factors and processes shaping the population structure and spatial distribution of genetic diversity across a species' distribution range are important in determining the range limits. We comprehensively analysed the influence of recurrent and historic factors and processes on the population genetic structure, mating system and the distribution of genetic variability of the pulmonate freshwater snail Radix balthica. This analysis was based on microsatellite variation and mitochondrial haplotypes using Generalised Linear Statistical Modelling in a Model Selection framework. Results: Populations of R. balthica were found throughout North-Western Europe with range margins marked either by dispersal barriers or the presence of other Radix taxa. Overall, the population structure was characterised by distance independent passive dispersal mainly along a Southwest-Northeast axis, the absence of isolation-by-distance together with rather isolated and genetically depauperated populations compared to the variation present in the entire species due to strong local drift. A recent, climate driven range expansion explained most of the variance in genetic variation, reducing at least temporarily the genetic variability in this area. Other factors such as geographic marginality and dispersal barriers play only a minor role. Conclusions: To our knowledge, such a population structure has rarely been reported before. It might nevertheless be typical for passively dispersed, patchily distributed taxa (e.g. freshwater invertebrates). The strong local drift implied in such a structure is expected to erode genetic variation at both neutral and coding loci and thus probably diminish evolutionary potential. This study shows that the analysis of multiple factors is crucial for the inference of the processes shaping the distribution of genetic variation throughout species ranges. Additional files Additional file 1: Distribution of Radix taxa. Spatial distribution of the Radix MOTU as defined in Pfenninger et al. 2006 plus an additional, newly discovered taxon. This map is the basis for the inference of the species range of R. balthica. Additional file 2: Sampling site table and spatial distribution of diversity indices, selfing estimates and inferred population bottlenecks for R. balthica. Table of sampling site code, geographical position in decimal degrees latitude and longitude, number of individuals analysed with microsatellites (Nnuc), expected heterozygosity (HE) and standard deviation across loci, mean rarefied number of alleles per microsatellite locus (A) and their standard deviation, number of individuals analysed for mitochondrial variation (Nmt), rarefied number of mitochondrial COI haplotypes (Hmt), number of individuals measured for body size (Nsize). Figures A1 - A3 show a graphical representation of the spatial distribution of He, Hmt and, s, respectively. Additional file 3: Assessment of environmental marginality. PCA (principle component analysis) on 35 climatic parameters for the period from 1960 - 2000 from publicly availableWorldClim data. Additional file 4: Inference of a recent climate driven range expansion in R. balthica. Analysis of the freshwater benthos long term monitoring data of the Swedish national monitoring databases at the Swedish University of Agricultural Sciences SLU with canonical correspondence analysis

    Volcanic impacts on the Holocene vegetation history of Britain and Ireland? A review and meta-analysis of the pollen evidence

    Get PDF
    Volcanic ash layers show that the products of Icelandic volcanism reached Britain and Ireland many times during the Holocene. Historical records suggest that at least one eruption, that of Laki in a.d. 1783, was associated with impacts on vegetation. These results raise the question: did Icelandic volcanism affect the Holocene vegetation history of Britain and Ireland? Several studies have used pollen data to address this issue but no clear consensus has been reached. We re-analyse the palynological data using constrained ordination with various representations of potential volcanic impacts. We find that the palynological evidence for volcanic impacts on vegetation is weak but suggest that this is a case of absence of evidence and is not necessarily evidence of absence of impact. To increase the chances of identifying volcanic impacts, future studies need to maximise temporal resolution, replicate results, and investigate a greater number of tephras in a broader range of locations, including more studies from lake sediments

    Surviving in isolation: genetic variation, bottlenecks and reproductive strategies in the Canarian endemic Limonium macrophyllum (Plumbaginaceae)

    Get PDF
    Oceanic archipelagos are typically rich in endemic taxa, because they offer ideal conditions for diversification and speciation in isolation. One of the most remarkable evolutionary radiations on the Canary Islands comprises the 16 species included in Limonium subsection Nobiles, all of which are subject to diverse threats, and legally protected. Since many of them are single-island endemics limited to one or a few populations, there exists a risk that a loss of genetic variation might limit their longterm survival. In this study, we used eight newly developed microsatellite markers to characterize the levels of genetic variation and inbreeding in L. macrophyllum, a species endemic to the North-east of Tenerife that belongs to Limonium subsection Nobiles. We detected generally low levels of genetic variation over all populations (HT = 0.363), and substantial differentiation among populations (FST = 0.188;RST = 0.186) coupled with a negligible degree of inbreeding (F = 0.042). Obligate outcrossing may have maintained L. macrophyllum relatively unaffected by inbreeding despite the species’ limited dispersal ability and the genetic bottlenecks likely caused by a prolonged history of grazing. Although several factors still constitute a risk for the conservation of L. macrophyllum, the lack of inbreeding and the recent positive demographic trends observed in the populations of this species are factors that favour its future persistence

    Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf

    Get PDF
    We evaluate the available palaeontological and geochemical proxy data from bivalves, bryozoans, silicoflagellates, diatoms and cetaceans for sea surface temperature (SST) regimes around the nearshore Antarctic coast during the late Neogene. These fossils can be found in a number of shallow marine sedimentary settings from three regions of the Antarctic continent, the northern Antarctic Peninsula, the Prydz Bay region and the western Ross Sea. Many of the proxies suggest maximum spring–summer SSTs that are warmer than present by up to 5 °C, which would result in reduced seasonal sea ice. The evidence suggests that the summers on the Antarctic shelf during the late Neogene experienced most of the warming, while winter SSTs were little changed from present. Feedbacks from changes in summer sea ice covermay have driven much of the lateNeogene ocean warming seen in stratigraphic records. Synthesized late Neogene and earliest Quaternary Antarctic shelf proxy data are compared to the multi-model SST estimates of the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Despite the fragmentary geographical and temporal context for the SST data, comparisons between the SSTwarming in each of the three regions represented in the marine palaeontological record of theAntarctic shelf and the PlioMIP climate simulations show a good concordance
    corecore