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We evaluate the available palaeontological and geochemical proxy data from bivalves, 

bryozoans, silicoflagellates, diatoms and cetaceans for sea surface temperature (SST) 

regimes around the nearshore Antarctic coast during the late Neogene. These fossils can 

be found in a number of shallow marine sedimentary settings from three regions of the 

Antarctic continent, the northern Antarctic Peninsula, the Prydz Bay region and the 

western Ross Sea. Many of the proxies suggest maximum spring-summer SSTs that are 

warmer than present by up to 5C°, that would result in reduced seasonal sea ice. The 

evidence suggests that the summers on the Antarctic shelf during the late Neogene 

experienced most of the warming, while winter SSTs were little changed from present. 

Feedbacks from changes in summer sea ice cover may have driven much of the late 

Neogene ocean warming seen in stratigraphic records. Synthesized late Neogene and 

earliest Quaternary Antarctic shelf proxy data are compared to the multi-model SST 

estimates of the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. 

Despite the fragmentary geographical and temporal context for the SST data, 

comparisons between the SST warming in each of the three regions represented in the 

marine palaeontological record of the Antarctic shelf and the PlioMIP climate 

simulations show a good concordance. 

 

Key words: Antarctica, Palaeoclimate, Pliocene, Proxy, Climate models 

1. Introduction  

We review fossil evidence for sea surface temperatures and seasonality for the Antarctic 

shallow marine shelf during the latest Miocene, Pliocene and early Pleistocene (~6 to 2 Ma). 

For our study, we compare fossil materials sourced from a range of glacigenic and 

interglacial shallow marine sedimentary deposits from the terrestrial Antarctic Peninsula and 

East Antarctic regions include invertebrates (bivalve molluscs, bryozoans), vertebrates 

(cetaceans) and unicellular eukaryotes (silicoflagellates, diatoms). These are also compared to 

fossil data from local offshore marine sites, allowing a multi-proxy approach where samples 

are limited. Our review includes but is not exclusive to data from two of the broadly defined 

warmer climate intervals from the Antarctic Peninsula documented by Smellie et al. (2006) 

using 
40

Ar/
39

Ar and 
87

Sr/
86

Sr methods: the late Miocene (6.5 to 5.9 Ma) and the early 

Pliocene (5.03 to 4.22 Ma). Though the stratigraphic record of the source deposits and of the 

fossil materials themselves are often fragmentary, we have compared these with 

reconstructed sea temperatures for several time intervals in the late Neogene (e.g. Ciesielski 
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and Weaver 1974; Clark et al. 2010; Williams et al. 2010). We also assess peak summer 

temperatures and sea ice extent during warm climate intervals in the late Neogene. Thus our 

study provides a calibration for palaeoclimate reconstructions of warm intervals of the 

Pliocene world (e.g. Dowsett et al. 2010), and potentially for comparing with the Antarctic 

climate records that span key intervals of West Antarctic ice sheet collapse and regrowth 

(Naish et al. 2009). 

In this paper we aim to: (1) summarise modern marine environmental conditions and 

faunal distribution adjacent to the fossil sites; (2) provide a summary stratigraphic correlation 

for the latest Miocene, Pliocene and earliest Pleistocene coastal marine successions of the 

Antarctic that contain fossil assemblages; (3) summarise the range of palaeoclimate data that 

can be gleaned from these successions for specific intervals; (4) assess the veracity of the 

available data and their implications for peak summer warming; and (5) compare these data 

with the latest palaeoclimate simulations for intervals of late Neogene warmth.  

2. Climate and Seasonality in Modern Antarctic Shelf Seas 

The Southern Ocean has an area of 35 million km² and is covered by 60% sea ice in 

winter and 20% during the summer (Gutt et al. 2010). Sea ice extent around the Antarctic 

continent varies throughout the year with an almost complete coastal coverage during the 

austral winter. The only exceptions are polynyas, persistently open, large (up to 350,000 km²) 

areas of waters caused by upwelling of relatively warm water or formed by katabatic winds 

forcing ice away from fixed boundaries such as the coastline. There are many regions where 

large volumes of sea ice also persist into the summer months, such as the Weddell Sea and 

around parts of the East Antarctic coastline (Fig 1).  

Modern average seasonal SSTs around the Antarctic coast vary from ca. −1.8°C, at 

which point sea ice forms in water of normal salinity, to +1.4°C during the summer in 

particularly warm years (Table 1). The Antarctic Surface Water (AASW) can be stratified by 

solar heating leading to anomalously high temperatures; for example, temperatures of +5°C 

were recorded in Marguerite Bay in 2002 (BAS unpublished; Barnes et al. 2006).  The 

temperature range is influenced partly by strong, cold katabatic winds blowing off the 

Antarctic continent and cold polar waters contained by the Antarctic Circumpolar Current 

(ACC). These conditions allow for sea ice to be maintained around parts of the Antarctic 

coast even during the austral summer months. As our synthesis of data focuses on the James 

Ross and Cockburn islands in the Weddell Sea, and the Vestfold Hills and McMurdo Sound 
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in East Antarctica, we summarize modern oceanographic data for SST variation in these 

regions. As shown in Table 1 seasonal temperature variations around the Antarctic coast are 

very small. 

2.1 Weddell Sea 

The Weddell Sea is an important source region for Antarctic bottom water (AABW), 

formed when warmer deep water mixes with cooler shelf or ice shelf waters (Deacon 1937; 

Robertson et al. 2002). Measured potential temperatures from surface waters in the Weddell 

Sea range from −1.80°C (surface freezing temperature at the present salinity) to +1.15°C (see 

Table 1 and references therein). Salinity in the same water mass ranges from 33.0 to 34.5 psu 

in the winter (Weiss et al. 1979; Robertson et al. 2002).  

Annual summer flux of glacial meltwater, which has a low δ
18

O, into the northern 

Weddell Sea around James Ross Island affects the salinity of surface water. There are no 

modern detailed studies of meltwater flux around James Ross Island, from which the most 

extensive Neogene fossil assemblages are derived. By contrast, meltwater fluxes are well 

constrained for surface water in the western Antarctic Peninsula region in Marguerite Bay at 

68°S (Meredith et al. 2008; Williams et al. 2010). The north end of Marguerite Bay is 

covered by winter sea ice for several months, which provides a useful comparison for 

seasonal meltwater fluxes from sea ice and glacial sources into the modern James Ross Island 

area, despite different geographical settings. In Marguerite Bay, between 3 and 5% of the 

near-surface ocean is estimated as formed by glacial meltwater (Jenkins and Jacobs 2008; 

Meredith et al. 2008), with sea ice-melt accounting for a much smaller percentage (ca. 1%) 

(Meredith et al. 2008). The effects of seasonal sea ice-melt on the δ
18

O of seawater, and 

therefore salinity, are minimal (Meredith et al. 2008) but those of glacial ice-melt are 

considerably more significant as high latitude ice has very low δ
18

O, with values as low as 

−50‰ (Weiss et al. 1979; Meredith et al. 2008). The meltwater fraction that we assume for 

modern waters around James Ross Island may be a little overestimated because here warm 

water upwelling onto the shelf (Fahrbach et al. 1995) is less significant than in Marguerite 

Bay, which is affected by upwelling of relatively warm Circumpolar Deep Water (CDW) 

(e.g., Klinck et al. 2004). 

 

2.2 East Antarctica 
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SSTs vary around the East Antarctic coast, but for this study we focus on two main 

areas, Prydz Bay and the Ross Sea. The East Antarctic coastline is very extensive so direct 

temperature measurements are sparse (see Table 1 for data and references). On average, 

present-day SSTs around the coast of East Antarctica range from −1.7 to +1°C according to 

the National Oceanic and Atmospheric Administration (NOAA; 

www.emc.ncep.noaa.gov/research/cmb/sst_analysis/). In the Ross Sea, close to the coastline, 

sea surface temperatures have a smaller overall range during the summer (Table 1) but in 

winter the area is covered by extensive sea ice (Fig 1). A study by Trevisiol et al. (2012) in 

Terra Nova Bay, Ross Sea demonstrated that Adamussium colbecki bivalve shells could be 

used to measure, within error, the summer sea temperature of the local environment.  

Modern measurements for freshwater influx into the coastal waters around East 

Antarctica are sparse. Glacial meltwater in Prydz Bay during two Antarctic cruises (13
th

 and 

14
th

 Chinese National Antarctic Research expeditions; CHINARE) was calculated to be 

between 0% and 3.98% (Cai et al. 2003). Mean meltwater concentrations at the front of the 

Ross Ice Shelf were measured by Loose et al. (2009) and these showed inter-annual variation 

(for example; 2.2±0.36‰ in 2000 and 0.25±0.1‰ in 2001). Burgess et al. (2010) also 

interpreted variations in δ
18

O from late Holocene barnacle plates (Bathylasma corolliforme) 

as representing fluctuations in meltwater under the McMurdo Ice Shelf. Past influxes may 

have been even greater, something which can potentially be tested by looking at variations in 

strontium ratios in bivalve shells (see section 4.1 for further detail).  

In McMurdo Sound peak SSTs were recorded by in situ temperature loggers in mid-

January and early February during 2000 and 2001 (see Table 1).
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Table 1. Modern oceanographic data measured close to sites where fossil material has been collected. 

Note that a variety of methods have been used and measurements were taken from different locations. 

*NOAA Optimum Interpolation SST Analysis (www.emc.ncep.noaa.gov/research/cmb/sst_analysis)  

** Single temperature from A. colbecki 

2.3 Sea Ice 

 Modern sea ice extent varies from year to year and can be measured using satellite 

techniques (see Fig 1). It is also very seasonal, with an average summer minimum extent of 3 

x 10
6
 km² to a winter maximum extent of 18 x 10

6
 km² (Zwally et al. 2002; Comiso 2010; 

Comiso et al. 2011). Based on new passive microwave satellite data analysis, Turner et al. 

(2009) show that since the late 1970s, Antarctic annual mean sea ice extent has increased at a 

rate of 0.97% per decade. This pattern agrees with studies by Comiso et al. (2011) who 

calculated an increase in sea ice concentration at a rate of 0.8% dec
˗1

 based on data from 1992 

to 2008.  

 

3. Modern Marine faunal distribution and environmental conditions adjacent to 

the fossil sites  

The average depth of the Antarctic continental shelf is 450 m, unusually deep due to 

subglacial erosion during previous glacial maxima and isostatic depression of the continent 

because of ice-sheet loading (Clarke and Crame 2010). In comparison to other marine shelves 

Locality Modern annual 

SST range (°C) 

Modern seasonal 

range (°C) 

Glacial melt 

water (Gt a-1) 

Modern 

salinity (psu) 

Reference 

Weddell Sea −1.75 to +1.15 2.9  34.3 to 34.4 Weiss et al. 1979 

  126  Schlosser et al. 1990 

−1.8 to +1.0 2.8  33.0 to 34.5 Robertson et al. 2002  

−1.8 to −1.0 0.8  33.6 to 34.4 Nicholls et al. 2009 

−1.7 to +1.0 2.7   NOAA* 

East Antarctic 

coast 

−1.7 to +1.0 2.7   NOAA* 

Prydz Bay −1.1 to −0.6 0.5 to 2.49   Kerry 1987; Kerry et al. 

1987 

−1.87 (min)   33.5 to 34.3 Smith & Tréguer 1994 

+1.39    Gibson et al. 1998 

  10.7 to 21.9  Wong et al. 1998 

Ross Sea/ 

McMurdo 

Sound 

−2.14 to −0.96 °C 1.18  34.12 to 34.84 Tressler,& 

Ommundsen, 1962 

0.2 ±0.50 **     Eggers 1979 

−0.35 to −0.65 

(peak) 

   Hunt et al. 2003 

< −1.5    34.30 to 34.36 Orsi & Wiederwohl 

2009 

  14.2   Pritchard et al. 2012 

−1.7 to 0 (only 

summer) 

1.7   NOAA*  

Pacific sector   200 to 215   Hohmann et al. 2002 

−1.6 to +1.0 °C 2.6  <34.2 Smethie Jr & Jacobs 

2005 
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around the world there are no river inputs and the small terrestrial freshwater input comes 

from glacial processes or wind (Clarke and Crame 2010). Most of the Antarctic coastline is 

ice, with only a small percentage of rock exposed. The shallow seabed along this coastline is 

subjected to intense scouring by icebergs, making it hard for many intertidal fauna to 

establish themselves (Clarke and Johnston 2003). There are currently over 4100 benthic 

species known in the Southern Ocean (Clarke and Johnston 2003), though this diversity may 

have increased in recent years because of species invasions (for example king crabs in Palmer 

Deep; Smith et al. 2012). The total macrofaunal diversity on the continental shelf likely 

exceeds 15,000 species (Gutt et al. 2004; Aronson et al. 2007); this is under evaluation by the 

Census of Antarctic Marine Life (CAML: www.caml.aq/). The benthic communities that 

inhabit the shallow-shelf (<100 m depth) surrounding the vast continent are structurally and 

functionally archaic when compared to similar communities in other parts of the globe 

(Aronson et al. 2007). Dense populations of epifaunal suspension feeders such as crinoids, 

bryozoans and brachiopods are dominant in benthic communities (Aronson et al. 2007) and 

are associated with coarse glacial sand and gravel glacial substrates (Clarke et al. 2004).  

Modern warming is apparent in these waters as crabs reinvading Antarctica that, 

along with other durophagous predators, could potentially alter the character of the present 

ecosystem there (Aronson et al. 2007). These organisms are thought to have been carried to 

the Antarctic in their larval stage by eddies or by Sub-Antarctic water injected into warm 

deep water masses that impinge onto the Antarctic shelf (Thatje and Fuentes 2003). Other 

possible modes of transport include driftwood or kelp rafts (Highsmith 1985; Helmuth et al. 

1994) as well as ships crossing the Polar Front (Barnes et al. 2006).  

3.1 Weddell Sea 

Modern coastal environments of James Ross Island and Cockburn Island, where 

seasonal sea ice is well established (see Fig 1), are characterised by the slow-growing, thin-

shelled scallop Adamussium colbecki (see Berkman et al. 2004). This bivalve is thought to 

have originated in cold, deeper ocean waters and migrated onto the Antarctic shelf during the 

late Pliocene as conditions cooled (Berkman et al. 2004). A. colbecki lives below sea ice, in 

similar conditions to the deep ocean, with sustained darkness and limited primary production.  

Shores in the Antarctic are usually characterised by a thin algal growth and variable 

concentrations of limpets (Berry and Rudge 1973 and references therein). On the western 

Antarctic Peninsula shelf, limpets can be found occupying the upper part of the littoral zone 
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and are mainly Patinigera polaris, a species only found south of the Antarctic Convergence 

Zone (Berry and Rudge 1973).  

3.2 East Antarctica 

The fossil-rich Sørsdal Formation crops out in the Vestfold Hills, which are flanked 

by the Sørsdal Glacier 2 km to the south and slowly flowing ice draining the East Antarctic 

Ice Sheet (EAIS) 15 km to the east (Whitehead et al. 2001). The Lambert Glacier-Amery Ice 

Shelf system drains 13% of the EAIS into Prydz Bay (Hambrey et al. 1991), about 100 and 

200 km away from the Larsemann Hills and the Vestfold Hills respectively. Modern shallow-

water bays in the area contain abundant red algae and a single species of bivalve, Laternula 

elliptica (King and Broderip, 1831) (Quilty et al. 2000).  

To the west of Prydz Bay is the Mac. Robertson shelf, a relatively narrow part of the 

continental shelf. This has been heavily eroded and sculpted by grounded ice during glacial 

maxima, and deposition took place mainly during interglacials (Truswell et al. 1999; 

Mackintosh et al. 2011); it is very different from the deposition-dominated shelf in Prydz Bay 

(O’Brien et al. 2007). Strong west-flowing currents transporting sediment and icebergs are 

dominant at present (Harris and O'Brien 1998; Truswell et al. 1999).  

4. Stratigraphic setting of Late Neogene shelf fossil assemblages 

There are few fossil-bearing marine deposits of late Neogene age on the Antarctic 

landmass (e.g. Webb 1991; Taviani & Beu 2003; Stilwell & Long 2011) (Figs 2 and 3). This 

is invariably due to the scarcity of exposure, which is limited to the coastal edges and some 

ice-free inland areas. These few onshore sedimentary deposits are much less stratigraphically 

complete than the Neogene and Quaternary sedimentary record of the adjacent Southern 

Ocean and Ross Sea (e.g. Jonkers 1998; Naish et al. 2009), but nevertheless provide a unique 

source of fossil material that can give an indication of the temperature of and seasonality in 

shelf seas bordering Antarctica in the latest Miocene, Pliocene and earliest Pleistocene. 

Below, we summarise the main geographical settings for each of the late Neogene fossil-

bearing shallow shelf Antarctic sites. We comment on the resolution of the available 

stratigraphic dating, which involves a combination of biostratigraphic, magnetostratigraphic, 

chemostratigraphic and radiometric techniques. Many of the sedimentary deposits are 

glacigenic and therefore have the added taphonomic problem of the reworking of older fossil 

materials into younger deposits. 
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4.1 James Ross Island, Antarctic Peninsula  

James Ross Island is situated in the NW Weddell Sea, just to the East of the northern 

tip of the Antarctic Peninsula, at 64.17°S and 57.75°W (Fig 2). The James Ross Island 

Volcanic Group (JRIVG) dominates the outcrop geology of the island (Smellie et al. 2013). 

The volcanic rocks unconformably overlie relatively unconsolidated Cretaceous marine 

sedimentary deposits. Some 10 million years of late Neogene and Quaternary history is 

recorded in the JRIVG (Smellie et al. 2006; Smellie et al. 2008; Hambrey et al. 2008; Smellie 

et al. 2009). Sedimentary deposits in the JRIVG are dominated by diamict, conglomerate and 

minor sandstone, sections of which contain fossil material (Smellie et al. 2006; Williams et 

al. 2006; Hambrey et al. 2008; Nelson et al. 2009) (Table 3). Collectively these fossils occur 

in strata of late Miocene (ca. 6 Ma) through early Pleistocene age (ca. 2 Ma). Stratigraphic 

analysis of the JRIVG has identified three broadly defined intervals of relative climate 

warmth in the northern peninsula region, when volcanic rocks were erupted into marine 

environments (Smellie et al. 2006). Radiometric (
40

Ar/
39

Ar) chronology from the volcanic 

rocks, together with 
87

Sr/
86

Sr chronology from the molluscs in the intervening sedimentary 

deposits, have produced a well resolved stratigraphy which constrains the warm intervals 

from 6.5 to 5.9 Ma (late Miocene), 5.03 to 4.22 Ma (early Pliocene), and ca 0.88 Ma (late 

Pleistocene) (the late Pleistocene interval will not be discussed in this paper).  

 

Although marine fossil material is widespread in the sedimentary deposits of the 

JRIVG (Smellie et al. 2006; Nelson et al. 2009), most material that is suitable for 

environmental analysis has been sourced from three key localities on James Ross Island in 

the Hobbs Glacier Formation (labelled D6.404, D6.405 and D6.407 in Table 2). Where data 

are available, locality ages are bracketed by 
40

Ar/
39

Ar isotopic ages from overlying and 

underlying volcanic rocks or can be assigned a minimum age (e.g. at Forster Cliffs this is 

constrained to 2.5 Ma by a date from an overlying lava-fed delta; Table 2). ⁸⁷Sr/⁸⁶Sr 

chronology has also been used on calcitic bivalve shells collected from diamicts (Table 2). 

Discrepancies occur when comparing 
40

Ar/
39

Ar ages with ⁸⁷Sr/⁸⁶Sr ages and ⁸⁷Sr/⁸⁶Sr ratios 

obtained from individual shells. Our fossil samples show no adhering terrigenous matrix nor 

are they abraded, which suggest that reworking from older deposits is probably minor or 

absent (Nelson et al. 2009). Thus, the range of ages for bivalve molluscs collected from the 

same layer may indicate that the primary marine ⁸⁷Sr/⁸⁶Sr ratios have been modified, perhaps 

by freshwater flux with a different strontium signal during summer ice proximal melting at 
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the time the bivalves were living (see Huang et al. 2011 for evidence of ⁸⁷Sr/⁸⁶Sr variations 

due to freshwater input). The presence of a few fossil ages considerably younger than 

overlying volcanic rocks at some sites (Table 2) is also an indication that some primary Sr 

ratios have been modified. Samples D6.407.4 and D6.407.8 included in Table 2 are an 

example of this with a mean Sr age of 2.05 and 1.57 Ma respectively. The preservation 

protocols that were used to identify altered shells indicated that these individuals showed 

signs of being recrystallized. The young Sr ages are consistent with this inference and 

highlight the need for careful assessment of preservation. Wilson et al. (2007) pointed out 

that Sr-ages on a number of shell fragments sampled from the ANDRILL AND-1B drill core 

(McMurdo Ice Shelf) do not show the expected down-core increase but provide much older 

ages for bivalve fragments found in stratigraphically higher sections. The authors concluded 

that the most likely major contributor to this discrepancy was contamination by less 

radiogenic matrix sediment. Marcano et al. (2009) noted that different bivalves within the 

SMS AND-2A core (southern McMurdo Sound) had different Sr isotopic values, with the 

calcitic pectinid samples having younger ages compared to the associated aragonitic 

Veneridae bivalves. This was also noted in Acton et al. (2009) who concluded that improved 

age constraints could be determined by dating using strontium ratios from calcitic bivalves. 

Although unrecognized recycling of fossils from several late Neogene deposits may have 

occurred in the JRIVG sedimentary deposits, the presence of articulated and well-preserved 

shells at some sites is also consistent with minimal or no reworking. 



11 

 

 

Table 2 Compilation of 
87

Sr/
86

Sr data for Austrochlamys shells (each number indicates a fragment from a different individual specimen) from the James Ross Island 

region: locality numbers (1-8) are reference numbers for this paper only. 
 40

Ar/
39

Ar ages have been included where available as a comparison (see included 

references for complete methods and calculations used). Note that in some cases there is a wide range of values for shells from the same deposits. 
87

Sr/
86

Sr values 

and ages from Smellie et al. (2006) and Nelson et al. (2009) are mean values calculated from a number of shells from the same locality. Ages as young as 1.57 Ma 

from South Blancmange Hill are very unlikely to be valid and suggest there may be another contributing factor to the strontium ratios as highlighted above. 

(Smellie et al. 2006; Smellie et al. 2008; Nelson et al. 2009; Nỳvlt et al. 2011; John McArthur, University College London and Ian Millar, British Geological Survey). 

*Individual shell is recrystallized. 

References Shell Fragment Locality GPS ⁸⁷Sr/⁸⁶Sr Mean Age Error (+) Error (-) 

Smellie et al. 2006 (Data 

calibrated from J McArthur, 

University College London) 

DJ.1741.6 

DJ.1745.4 

1) Below Forster Cliffs main delta 

3 km SW of Terrapin Hill 

63°59.8′S, 57°35.6′W 0.709051 

0.709034 

4.23 

5.06 

0.51 

0.35 

0.95 

0.41 63°59.6′S, 57°34.7′W 

DJ.1754.7 2) Below Forster Cliffs main delta 

Eastern Forster Cliffs 

63°59.9′S, 57°29.5′W 0.708971 6.45 0.31 0.21 

DJ.1755.6 63°59.8′S, 57°30.1′W 0.709038 4.93 0.35 0.51 

From Ian Millar, BGS D6.404.2 3) Northwest Forster Cliffs, 

immediately south of the waterfall 

63°99.673’S, 57°58.917’W 0.709071 1.13 0.13 0.17 

D6.404.6  0.709083 2.30 0.30 0.25 

D6.404.12  0.709071 2.63 0.83 0.38 

From John McArthur, UCL D6.407 4) South Blancmange Hill 63°59.987’S, 57°37.964’W 0.709038 4.94 0.31 0.45 

From Ian Millar, BGS D6.407.1  63°59.987’S, 57°37.964’W 0.708987 6.25 0.20 0.15 

D6.407.2 0.709017 5.70 0.15 0.14 

D6.407.3 0.709050 4.75 0.25 0.55 

D6.407.4* 0.709088 2.05 0.20 0.35 

D6.407.8* 0.709105 1.57 0.22 0.19 

Smellie et al. 2008 D5.7 5) Blancmange Hill  63°99995’S, 57°63315’W 0.709039 4.89 0.35 0.53 

From Ian Millar, BGS D6.405.1 6) Cascade Cliffs 63°59.855’S, 57°35.680’W 0.709071 2.63 0.83 0.38 

D6.405.2 0.709087 2.08 0.30 0.36 

D6.405.3 0.709076 2.55 0.50 0.25 

D6.405.4 0.709059 4.15 0.55 0.95 

D6.405.4 0.709056 4.11 0.66 1.23 

D6.405.6 0.709066 3.30 0.95 0.65 

Nỳvlt et al. 2011 PC05-1a 7) Ulu Peninsula 63°48.1222’S, 57°52.5285’W 0.708992 5.93 0.09 0.11 

PC05-1b 0.709012 5.65 0.15 0.24 

Pirrie et al. 2011  8) Brandy Bay outcrop 63°50.64’S, 58°01.57’W 0.709050 4.33 0.56 1.31 

References Shell Fragment Locality Relation to shell-bearing deposit GPS Age (Ma) 
40

Ar/
39

Ar 
 

±2σ 

Smellie et al. 2006 DJ.1752.3 1,2) Forster Cliffs  Lava-fed delta - above 64°00.4′S, 57°36.6′W 2.50 0.07 

Smellie et al. 2008 DJ.1745.2 1,2) Foster Cliffs Basal delta - below 63 59.61′S, 57 34.68’W 5.47 0.11 

Nỳvlt et al. 2011 PC05-1a 7) Ulu Peninsula Pillow lava - below 63°48.1222’S,  

57°52.5285’W 

  

PC05-1b Mendel Formation  5.85 0.31 

Smellie et al. 2008 DJ.1715.1  Basal volcanic delta - above 63 49.63′S, 57 50.48′W 5.32 0.16 
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More recently there have been further discoveries of Austrochlamys shells on 

northwestern James Ross Island (Locality DJ.1501; Pirrie et al. 2011). Although reworked 

into the active layer of modern periglacial sediments, the shelly fossils are indistinguishable 

in age from those on Cockburn Island (see below).  

Bivalves are also reported from the Mendel Formation (Nývlt et al. 2011), found on 

the Ulu Peninsula in the northern part of James Ross Island, which has an age of 5.9-5.4 Ma 

according to 
40

Ar/
39

Ar dates on associated volcanic rocks and ⁸⁷Sr/⁸⁶Sr dates on individual 

bivalve shells. It has a thickness of at least 80 m and is restricted in outcrop to the 

northwestern tip of Ulu Peninsula (Nývlt et al. 2011). The formation is made up of terrestrial 

glacigenic lodgement and melt-out till, glaciofluvial sandstone, glacimarine debris flow 

deposits, diamict, tuffaceous sand and siltstone.  

4.2 Cockburn Island, Antarctic Peninsula 

The JRIVG also crops out on the summit of Cockburn Island and contains the richest 

late Neogene fossil assemblages from the Antarctic Peninsula region. These are contained 

within the interglacial marine Cockburn Island Formation (CIF), and include abundant large 

molluscs, especially Austrochlamys (‘Zygochlamys’ of Jonkers et al. 2002; see Jonkers 

(2003) for a detailed taxonomic appraisal). The formation consists of rusty-brown sandstone 

and conglomerate containing clasts exclusively derived from the JRIVG (Jonkers 1998). 

40
Ar/

39
Ar  ages from the underlying volcanic rocks provide a maximum age of ca. 4.9 Ma for 

the CIF (Jonkers and Kelley 1998). Ages determined using mean Sr isotope ratios from 

Dingle et al. (1997); based on Howarth and McArthur (1997) and Sr isotope ratios from 

bivalve shells (McArthur et al. 2006) suggest a depositional age of 4.7 (+0.6/ −1.2) and 4.66 

(+0.17/−0.24) Ma respectively (Pirrie et al. 2011). These ages are stratigraphically consistent 

with the 
40

Ar/
39

Ar age of the underlying volcanic rocks. In contrast a biostratigraphic age 

based on the diatom assemblage suggested that the deposit was formed around 3 Ma (Jonkers 

and Kelley 1998; Pirrie et al. 2011) but an updated biostratigraphy places this at 2.8 to 2.4 Ma 

(Cody et al. 2008; 2012; Levy et al. 2012). Ages based on diatom biostratigraphy can be 

problematic as aeolian transportation of diatoms by wind may have occurred (e.g. Kellogg 

and Kellogg 1996; Kellogg et al. 1997; Stoeven et al. 1997; McKay et al. 2008). It has also 

been suggested that marine diatoms of Eocene to Pliocene age were atmospherically 

transported to Antarctica by the Eltanin asteroid impact in the South Pacific at ~2.15 Ma 

(Gersonde et al. 1997).  
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4.3 Vestfold Hills, East Antarctica  

The Sørsdal Formation crops out in the Marine Plain area of the Vestfold Hills, covers 

~10 km
2
 of this area (Fig 4), and consists of horizontal diatomaceous siltstone and sandstone 

with dark limestone lenses (Quilty et al. 2000; see Table 3 for details). These deposits 

unconformably infill valleys within Precambrian metamorphic basement rock (Adamson and 

Pickard 1983). The part of the Sørsdal Formation that contains abundant bivalve material has 

been dated to the early Pliocene (4.5-4.1 Ma) using diatom and bivalve biostratigraphic 

records (Adamson and Pickard 1986; Pickard et al. 1986, 1988; Quilty et al. 2000; Harwood 

et al. 2000) and is supported by magnetic polarity data from the site (Berggren et al. 1995; 

Quilty et al. 2000). This age has been further constrained to 4.2 to 4.1 Ma (Whitehead et al 

2004; Whitehead et al. 2006b). Shelly lenses within diatomaceous sandstone beds contain 

numerous hiatellid bivalves, dominantly of Hiatella cf. arctica (Quilty et al. 2000) along with 

fossil dolphin and whale bones (Adamson and Pickard 1983; Quilty 1991); apart from early 

fracturing, there is no evidence for major diagenetic effects on the vertebrate material 

(Fordyce et al. 2002). The outcrop is also distinguished by a lack of volcanism, tectonics or 

reworking, which is unusual for Neogene in coastal Antarctica (Quilty et al. 2000). 

To the NE of Marine Plain, Vestfold Hills, younger sedimentary macrofossil-bearing 

deposits are recorded in the Heidemann Valley (Fig 5). These have been dated as Pliocene in 

age (3.5 to 2.6 Ma), determined from amino acid racemisation, diatom and foraminifera 

biostratigraphy and magnetic polarity data (Colhoun et al. 2010). There are uncertainties 

associated with both the magnetic data, due to unreliable interpretation of polarity changes in 

the absence of absolute dating, and amino acid dating of molluscs due to assumptions about 

temperatures controlling the rate of amino acid diagenesis. The foraminifera biostratigraphy 

only provides an upper age limit due to the absence of Ammoelphidiella antarctica and the 

fact that all other foraminifera reported are extant. The diatom biostratigraphy used by 

Colhoun et al. (2010) is based on the presence of Thalassiosira insigna (Jousé) Harwood & 

Maruyama, 1992 and Fragilariopsis kerguelensis (O’Meara) Hasle, 1958, indicating an age 

of >2.6 Ma and <3.2 Ma respectively. However, using these same species and biostratigraphy 

from Cody et al. (2008), the age range would be 2.29 to 2.19 Ma, which would not correlate 

with the other dating methods used. The Heidemann Valley deposits may correlate with a 

marine incursion (M10 of Whitehead et al. 2006b) dated at 3.2 to 2.5 Ma that can be traced 



14 

 

500 km to the SW at Amery Oasis and is part of a major marine incursion onto the East 

Antarctic craton (Whitehead et al. 2006b; Quilty 2010). The deposit at Heidemann Valley is 

just 4 m thick and it can only be reached by digging trenches through regolith (see Colhoun et 

al. 2010).  

 

4.4 Larsemann Hills, East Antarctica  

Pliocene deposits also occur in the Larsemann Hills, about 100 km SW of the 

Vestfold Hills (see Fig 5). They consist of grey clayey sand that contains in situ fossiliferous 

material similar to that obtained in the Vestfold Hills (Quilty et al. 1990). The Larsemann 

Hills deposits were originally dated as Pliocene using the age range of the foraminifer 

Ammoelphidiella antarctica (3.8-2.5 Ma; Webb 1974; Quilty et al. 1990), though this was 

later revised to 4.5 to 3.8 Ma (McMinn and Harwood 1995). 

4.5 McMurdo Sound, East Antarctica  

The Scallop Hill Formation (SHF; Figs 2 and 3) in the McMurdo Sound region of the 

Ross Sea was first defined by Speden (1962) and contains pectinid-bearing deposits (Jonkers 

1998). This is the older of two main sedimentary successions in this region (the younger 

being the Taylor Formation) and consists of tuffaceous sandstone and conglomerate 

containing Austrochlamys anderssoni (Speden 1962; Jonkers 1998). Balanomorph barnacles 

belonging to an extant taxon Bathylasma corolliforme (Hoek) (Hexelasma antarcticum 

Borradaile in Speden [1962]) have also been found (Jonkers 1998). Most exposures of the 

SHF are not in situ, for example, exposures on Ross and White islands. Speden (1962) 

suggested it is only in situ at the type locality on Scallop Hill, a trachytic dome on Black 

Island, but further studies by Leckie and Webb (1979) contradicted this, concluding that all 

localities where the SHF is seen have been displaced from their original position. K-Ar dates 

from the underlying trachyte at Scallop Hill yield an age of 4.4 ±0.6 Ma (early Pliocene; 

Leckie and Webb 1979) and 3.8 ±0.2 Ma (Eggers 1979). K-Ar dating of the underlying 

Aurora trachyte on the Brown Peninsula yielded an age of 2.25 Ma and of the basalt 

overlying the SHF an age of 2.2 Ma (early Pleistocene; Eggers 1979). This relationship was 

not replicated by the study of Webb and Andreasen (1986) but K-Ar ages from volcanic 

boulders in the formation suggested a maximum age of latest Pliocene (2.62 ± 0.04 Ma and 

2.58 ±0.09 Ma; see Eggers 1979; Jonkers 1998). 
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4.6 Wright Valley, East Antarctica 

 

The Prospect Mesa Gravel Formation (PMGF; previously known as the Pecten 

Gravels; Nichols 1971) has also been called the Prospect Formation (Vucetich and Topping 

1972). It forms part of the Wright Valley sedimentary deposits (Fig 2) of Victoria Land, and 

represents an interval of fossiliferous gravel deposition (Prentice et al. 1993) containing 

thick-shelled pectinids described as Austrochlamys tuftsensis (Jonkers 2003) (previously 

known as Chlamys or Zygochlamys tuftsensis; Turner 1967; Jonkers 1998). The presence of 

the diatoms Fragilariopsis kerguelensis (O’Meara) and Thalassiosira insignis (Jousé) 

(Prentice et al. 1993) suggested an age of 3 to 2.5 Ma (Jonkers 1998). Recent diatom 

stratigraphy of Cody et al. (2008) suggests an age around 2.2 Ma. An age of 5.5 ± 0.4 Ma was 

reported from Sr-dating of A. tuftsensis shells (Prentice et al. 1993; Jonkers 1998). This is 

very different than that suggested by the diatom biostratigraphy, indicating potential issues 

with one or both of these methods (as mentioned previously). However, as we have noted for 

Sr-isotope ages obtained on James Ross Island shells, salinity variations experienced by the 

shells during growth may have affected the Sr isotopic ratios measured. Jonkers (1998) also 

queried the reliability of the Sr-isotope approach to dating these deposits. The overlying 

Peleus Till contains the same marine diatom species as the Prospect Mesa gravels which have 

been inferred to have been reworked and may thus be younger than 3 Ma (Prentice et al. 

1993). Hall et al. (1997) used field relationships and 
40

Ar/
39

Ar isotope dating of basalt erratics 

to determine an age of >3.8 Ma for the Peleus Till.  
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Reference Locality GPS Formation/ 

Member 

Age Range Lithology Sedimentary setting/ 

water depth 

Material Collected 

Pirrie et al. 

1997; Dingle 

and Lavelle 

1998; Jonkers 

1998; Smellie 

et al. 2006; 

Hambrey et al. 

2008;  Nelson 

et al. 2009 

James Ross 

Island 

1-3) Forster 

Cliffs 

63°99.673'S              

57°58.917'W                  

Hobbs Glacier 

Formation 

6.2 to 2.5 Ma; 

Ar* of overlying 

volcanics 

indicates diamict 

is older than 2.5 

Ma 

Sr** 2.63 to 1.13 

Ma *** 

Diamict-dominated Glaciomarine close to 

ice-front 

Austrochlamys bivalves, 

bryozoans 

Williams, M  

per comm 

James Ross 

Island 

6) Cascade 

Cliffs 

63°59.855'S            

57°35.680'W 

JRIVG Sr** 4.15 to 2.08 

Ma***  

Diamict  Austrochlamys bivalves, 

bryozoans 

Nelson et al. 

2009 

James Ross 

Island 

4) South 

Blancmange 

Hill 

63°59.987'S               

57°37.964'W 

JRIVG Sr** 6.25 to 1.57 

Ma (6 shells)*** 

Well-bedded fossiliferous 

conglomerate 

Ice-proximal glacial 

debris flow; episodes of 

ice expansion within a 

relatively warm period  

Austrochlamys bivalves, 

bryozoans 

Nỳvlt et al. 

2011  

James Ross 

Island 

7) Ulu 

Peninsula 

63°48.1222'S 

57°52.5285'W 

Mendel 

Formation 

 5.9 to 5.4 Ma Dominated by sandy to 

intermediate glaciomarine 

diamict 

 

At least two glacials 

and an interglacial; 

marine pro-delta with 

little glacial influence 

A. anderssoni, 

bryozoans, barnacles, 

foraminifera,  

fish teeth and ostracods 

Pirrie et al. 

2011 

James Ross 

Island 

8) Brandy Bay 

outcrop 

63°850.64'S              

58°801.57'W 

Brandy Bay 

outcrop 

Sr** 4.33 Ma Periglacial reworking of early 

Pliocene sediments 

Marine conditions A. anderssoni 

Jonkers 1998; 

Jonkers and 

Kelley 1998; 

Williams et al. 

2010 

Cockburn 

Island 

   64°12′S 

56°51′W 

Cockburn 

Island 

Formation 

3 Ma (diatom 

biostratigraphy) 

or 4.7 Ma (Ar* 

and Sr**) 

Interbedded fossiliferous 

conglomerate and sandstone 

containing clasts exclusively 

from the JRIVG 

Ice-free interglacial 

marine, shallower than 

100 m 

Austrochlamys, 

brachiopods, barnacles  

Pickard et al. 

1988; Quilty et 

al. 1990; Quilty 

1991; Quilty et 

al. 2000; 

Harwood et al. 

2000; 

Whitehead et 

al. 2004 

Vestfold 

Hills 

Marine Plain 68°38.5'S 

78°08'E  

Sørsdal 

Formation/ 

Graveyard 

Sandstone 

Member 

(GSM) 

4.2 to 4.1 Ma  

 

 

In situ horizontal bedded 

successions of diatomaceous 

silt and sandstone and 

diamicts. GSM: well-rounded, 

highly lithified, sandy diamict 

containing bivalves in living 

position  

Shallow, fully marine 

(within photic zone); 

maximum depth 25 m. 

Range of islands and 

bays relating to modern 

topography. GSM: 

higher energy 

environment; change 

from to glacial setting  

Bivalves including; A. 

tuftensis, Cyclocardia 

and hiatellids, diatoms, 

bryozoans, cetaceans, 

foraminifera  

 

Colhoun et al. 

2010; Quilty 

2010 

Vestfold 

Hills 

Heidemann 

Valley 

68°34.3’S 

78°01.9’E 

Heidemann 

Valley trench 

3.5 to 2.6 Ma   Till beds; poorly sorted sand 

containing cobbles and 

pebbles with lenses of sand 

and gravel 

Shallow, fully marine 

bay with locally sourced 

marine sediments.  

Low temp. in shallow, 

narrow embayment 

Hiatellids, Laternula, 

diatoms, foraminifera 
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Quilty et al. 

1990; Quilty 

1993; McMinn 

and Harwood 

1995 

Larsemann 

Hills 

 69°24.7S 

76°09.0E 

Not formally 

named 

4.5 to 3.8 Ma 

Possibly coeval 

with Marine Plain  

Grey clayey poorly sorted 

sand 

Shallow, fully marine at 

or above wave base 

(depths <50 m; likely 

10-20 m). Possibly 

warmer with higher sea 

level; indications of less 

sea ice 

Hiatellids, pectinids, 

foraminifera, diatoms 

Speden 1962; 

Eggers 1979; 

Jonkers 1998 

McMurdo 

Sound 

Region 

Brown 

Peninsula and 

Black, White, 

Ross Islands 

 Scallop Hill 

Formation 

2.6 to 2.4 Ma Cemented, tuffaceous 

sandstone and 

conglomerate 

Shallow marine 

environment, probably 

less than 100 m depth 

and possibly under an 

ice sheet at time 

A. anderssoni, 

Balanomorph barnacles, 

corals, bryozoans, 

foraminifera, ostracods, 

plant fragments  

Webb 1972; 

Prentice et al. 

1993; Hall et al. 

1993; Jonkers 

1998 

Victoria 

Land 

Wright Valley  Prospect Mesa 

Gravel 

Formation 

3 to 2.5 Ma 

Sr**  5.5±0.4 Ma 

Fossiliferous sandy gravels 

and massive mudstone 

Fjord deposit A. tuftsensis, 

foraminifera, diatoms 

 

Table 3 Stratigraphic information for Pliocene aged land-based marine fossil-bearing sites around the coast of Antarctica. Material collected includes fossils used 

for palaeoclimatic reconstructions only.  Age ranges given are general ranges from the published literature (see Figs 2 and 4 for more detail). Ages from 
40

Ar/
39

Ar 

and ⁸⁷Sr/⁸⁶Sr dating have also been included. JRIVG - James Ross Island Volcanic Group 

* 
40

Ar/
39

Ar dating 

** ⁸⁷Sr/⁸⁶Sr dating of bivalve shells 

***The Sr ages may be unreliable due to potential fresh water influences, local or diagenetic effects; the full range of values is included in each case  
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5. Environmental Setting of Late Neogene Fossil-bearing Shallow Marine Shelf 

Deposits  

5.1 James Ross Island, Antarctic Peninsula 

On James Ross Island, late Neogene marine fauna have been recovered from both ice-

proximal debris flow deposits and diamicts (Nelson et al. 2009). Fossiliferous glacigenic 

debris flow deposits at Blancmange Hill, signifying episodes of ice expansion within a 

relatively warm period, mainly accumulated along the margins of expanding ice masses 

(Nelson et al. 2009; Table 3). Austrochlamys bivalves appear to have been living on the shelf 

at the time of this ice expansion, and articulated specimens are included in the debris flow 

deposits at Blancmange Hill (Fig 6), suggesting minimal transport. This could suggest that 

the ice sheets were expanding during an interglacial period, possibly due to a ‘snow-gun’ 

affect (Bart 2001; Nelson et al. 2009; Smellie et al. 2009) or minor climate fluctuations. 

Material within diamicts may represent organisms living on the marine shelf immediately 

prior to the time of ice advance (and diamict formation) as is suggested by the occurrence of 

articulated bivalves at East Forster Cliffs. The numerous encrusting bryozoans on rounded 

blocks of local James Ross Island origin in the diamicts suggest local marine conditions and 

these same bryozoans encrust the inner surfaces of some Austrochlamys shells.  

The Mendel Formation in northwestern James Ross Island has a sparse macrofauna of 

Austrochlamys in massive sandy to intermediate diamict (33-67% sand content in the matrix 

based on the classification by Moncrieff, 1989) (PC05-1 from Nỳvlt et al. (2011). Marine 

fossil material is found only within terrestrial deposits indicating that is has been reworked 

(Nỳvlt et al. 2011).  

5.2 Cockburn Island, Antarctic Peninsula 

Within the Cockburn Island Formation Jonkers and Kelley (1998) recognised a 

western ‘proximal’ or ‘littoral’ facies and an eastern ‘distal’ deeper water facies; the latter is 

estimated to represent original water depths no greater than 100 m (see Table 3). The 

presence of large thick-shelled pectens, sessile barnacles and a lack of ice-rafted debris 

suggest deposition in a mainly ice-free environment (Jonkers and Kelley 1998), consistent 

with reconstructed seasonality and growth patterns from the bivalves (Williams et al. 2010). 

 

5.3 Vestfold Hills, East Antarctica  
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The Sørsdal Formation (Table 3) represents a shallow fully marine environment 

within the photic zone in a setting interpreted as representing bays with adjacent islands, 

comparable to the modern topography (Quilty et al. 2000). The palaeoclimate at the time of 

deposition (4.5-4.1 Ma) is thought to have been warmer than present with reduced or no sea 

ice, interpreted from a low abundance of sea-ice diatoms (compared to present) (Harwood 

1986; Pickard et al. 1986, 1988; Quilty 1991, 1992, 1993; Fordyce and Quilty 1994; 

Whitehead 2001). There is no lithological evidence for glacial erosion or re-deposition from 

the part of the succession composed of diatomaceous siltstone (Quilty et al. 2000). During 

deposition of the Sørsdal Formation it is assumed that the ice-sheet margin was at least 50 km 

farther inland compared to its current position, due to the large volume of aeolian sand grains 

within the formation (Pickard et al. 1988; Whitehead et al. 2001). It is interesting to note that 

the more open marine sedimentary deposits of the Vestfold Hills bear well-preserved 

carbonate microfossils whereas diatomites cropping out in the Marine Plain lack any 

calcareous microfossils. This is consistent with the Marine Plain representing a quieter, more 

restricted environment, probably in embayments (Quilty 1991). The absence of 

coccolithophorids has been noted by Whitehead et al. (2001). These have a restricted 

abundance in waters <+5°C (Dmitriyenko 1989) and limited growth in water <+3°C (Burckle 

and Pokras 1991), but a higher abundance in waters >+5°C (Goodell 1973; Burckle et al. 

1996). The absence of coccolithophores suggests, but does not prove, water temperatures of 

<+5°C (Whitehead et al. 2001). Specimens of a newly named dolphin species 

Australodelphis mirus, found in Marine Plain, are compared to species that do not 

permanently occupy coastal Antarctic waters at present, though this is partly based on lack of 

sightings (Fordyce et al. 2002). There are some modern species of dolphin that have seasonal 

occurrences in these waters such as the hourglass dolphin (Lagenorhynchus cruciger) 

(Kasamatsu and Joyce 1995). The general absence of sea-ice associated diatoms in the 

deposits containing A. mirus (Pickard et al. 1998) suggests these dolphins lived in an 

environment free of significant sea-ice (Fordyce et al. 2002). Along with estimates of +4 to 

+5°C for sea temperatures, the big assumption made for this interpretation is that A. mirus 

were similar to their nearest living relatives today, an assumption that may be inaccurate due 

to potential environmental drift.             

 

The overlying Graveyard Sandstone Member (GSM, Table 3) is a thin bed that 

indicates short-lived glacimarine conditions in the latter part of the Marine Plain deposition. 

From the lower part of the Sørsdal Formation to the upper GSM there is a change of 
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depositional environment from non-glacial to glacial and with this an associated cooling 

(Quilty et al. 2000). The diatom flora suggests shallowing and cooling, consistent with an 

expanding ice sheet at that time (4.5-4.1 Ma) (Harwood et al. 2000; Quilty et al. 2000).  

At the younger Heidemann Valley locality (Table 3) deposition occurred in a narrow 

valley under glacial conditions (Quilty 2010) during a marine incursion onto the continent. 

Water temperatures were close to the freezing point of seawater (−1°C to +1 or +2°C), 

similar to present. These deposits are nearly coeval with the Wright Valley (Dry Valleys) and 

probably represent the last time the area was covered by an enlarged EAIS (Colhoun et al. 

2010).  

5.4 Larsemann Hills, East Antarctica  

The sedimentary deposit at Larsemann Hills, thought to be coeval with Marine Plain, 

Vestfold Hills, contains fragmentary molluscs (Hiatella sp.) and lacks planktonic foraminifer 

species, suggesting a shallow water, fully marine environment at or above wave base (Quilty 

et al. 1990). The marine fossils found there are different from the modern faunas found in the 

region, likely due to its shallower origin (Quilty et al. 1990). Assuming a similar age of 

deposition to Marine Plain (4.5-4.1 Ma), this suggests the area had less intense glaciation 

than at present (Pickard et al. 1988) and was probably warmer with a higher sea level (Quilty 

et al. 1990).  

5.5 McMurdo Sound & Wright Valley, East Antarctica  

Both the Scallop Hill Formation (SHF) and the Prospect Mesa Gravel Formation have 

comparable microfaunas similar to present-day species living in fjord, channel and inshore 

glaciomarine environments in Alaska (Todd and Low 1967) and British Columbia (Cockbain 

1963; Eggers 1979). Eggers (1979) therefore concluded that the SHF indicated a shallow 

marine environment, probably less than 100 m depth and under an ice shelf. He also 

compared these conditions to the present day conditions under the Ross Ice Shelf (Kennett 

1968). Webb (1972) interpreted the fossiliferous Prospect gravels, of limited lateral extent in 

the Wright Valley, as a fjord deposit (Jonkers 1998). Prentice et al. (1987) inferred water 

temperatures of less than +5°C using marine diatoms, a much cooler estimate than Webb 

(1972) who suggested a warmer fjord with temperatures of up to +10°C (Prentice et al. 1993). 

6. Late Neogene Climate and Seasonality of Antarctic Coastal Regions 
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The overall cooling trend seen throughout the Pliocene (Zachos et al. 2001) has 

influenced many of the species that once lived around coastal parts of the Antarctic continent 

(e.g. Beu 1995; Clarke et al. 1992). Many, including predators at higher trophic levels, moved 

to lower latitudes in order to survive. High-latitude Chlamys-like scallops (e.g. Zygochlamys 

delicatula) similarly migrated northwards during colder periods of the late Pliocene and early 

Pleistocene (e.g. Beu 1995) demonstrating a sensitivity to climatic variation (Jonkers 1998). 

As these chlamydinids are not found in modern Southern Ocean ecosystems it is important to 

understand why they are present in late Cenozoic deposits in this region (Jonkers 1998). 

The late Neogene fossil assemblages from the Weddell Sea and East Antarctic coast 

contain bivalves, bryozoans, microfossils and vertebrates that have been used for 

environmental analysis. Of these, the bivalves and bryozoans (Fig 7) provide information that 

enables maximum and minimum sea temperatures and seasonality to be determined from 

morphological and geochemical data within the organisms’ skeletons. 

Palaeoclimate data from various marine-shelf fossil organisms preserved in the 

Neogene deposits of the Antarctic are summarised in Table 4. 
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Proxy Living environment Locality age Locality/GPS Interpreted SST 

range 

Interpretation/Sea ice? References 

Bivalve molluscs Pectinidae Shallow waters up to 100 

m 

         

Austrochlamys 

anderssoni 

Favours open marine, sea 

ice free conditions 

facilitating a yearround 

food supply. Water depths 

no greater than 100 m.  

Modern A. natans (closest 

living relative) occur in 

high energy sub-littoral 

and littoral zones of 

southern Chile and 

Argentina. 

4.7 Ma 

(Cockburn 

Island) 

James Ross 

Island and 

Cockburn Island 

−1.1 to +3.5°C 

(Cockburn Island) 

Interglacial marine conditions with 

little sea ice 

Jonkers 1998; Jonkers 

et al. 2002;  Jonkers 

2003; Berkman et al. 

2004; Dijkstra and 

Marshall 2008; 

Williams et al. 2010 

  Scallop Hill Fm, 

McMurdo Sound 

+2±0.13°C & 

+2±0.32°C 

Comparable to present day 

conditions under the Ross Ice 

Shelf 

Eggers 1979 

Austrochlamys tuftsensis  Pliocene    +10.5°C Maxima temperature not precise 

(using δ¹⁸O of 0‰) 

Quilty 1991  

Hiatellidae Slow-growing.  Found in 

lower intertidal and 

subtidal environments; up 

to depths of 200 m in 

cool-temperate to polar 

waters. Can survive 

salinities of 20‰ to 

normal marine 

4.5 to 3.8 Ma  Vestfold Hills    

 

Peacock 1989; 

Gordillo 

2001;Whitehead et al. 

2006a 

Cyclocardia sp. Known to live in fully 

marine conditions along 

rocky shorelines. Found 

in water depths of 9 m to 

up to 600 m 

4.2 to 4.1 Ma Marine Plain, 

Vestfold Hills 

  Quilty et al. 2000; 

WoRMS 

Natural Geography in 

Shore Areas 

(NaGISA) database 

Bryozoans  Can occur on shallow and 

deep shelves along the 

coastline; can live in 

annually or seasonally 

ice-free habitats 

5.06 to 4.23 

Ma 

James Ross 

Island  

MART 4 to 10  

 

 

 Schäfer 2008; Clark et 

al. 2010 

Silicoflagellates Dictyocha/ Distephanus 

 

Dictyocha is rare in 

regions South of 56°S 

MART is consistently 

between <0 and +1.5°C; 

Distephanus is dominant 

4.30 to 3.95 

Ma 

110°E to 160°W 

up to 69°S 

<+1.5°C to >+10°C Too warm for sea ice at certain 

intervals. Displacement to the 

South of northern Sub-Antarctic 

waters 

Ciesielski and Weaver 

1974 

3.7 Ma 

(event I), 4.4-

4.3 Ma 

(event II) and 

64.380°S, 

67.219°E - 

offshore from 

Prydz Bay 

event I: +5°C, event 

II: −4°C, event III: 

−4°C (mean annual 

SST) 

Time intervals where Dictyocha 

becomes dominant are interpreted 

as warmer. These events may 

represent times when NADW 

Whitehead and Bohaty 

2003  
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4.80 to 4.55 

Ma (event 

III) 

production and OHT into the 

Southern Ocean exert maximum 

influence 

   3.58 Ma Offshore Prydz 

Bay and West of 

the Antarctic 

Peninsula 

+2.5C° to +4C° 

warmer than present 

Overall warmer temperatures than 

present during interglacials with 

times of reduced sea-ice cover in 

Prydz Bay and west of the 

Antarctic Peninsula 

Escutia et al. 2009 

Diatoms Eucampia index Eucampia antarctica: 

widely distributed in the 

Southern Ocean and used 

as a sea ice proxy 

Pliocene; 5 to 

2 Ma 

64.380°S, 

67.219°E and 

67.696°S, 

74.787°E 

N/A Reduced sea ice conditions; 61% 

to 78% relative reduction in sea 

ice with possible periods of sea ice 

absence  

Whitehead et al. 2005 

AND-1B diatom record   5.50 to 4.75 

Ma 

Ross Sea  ~+3 to +4°C Annual sea ice cover limited to 

absent during interglacial periods 

Levy et al. 2012 

 4.6 to 3.3 Ma +4 to +5°C in summer 

(not above 8°C) 

Pliocene ocean circulation and 

bottom-water formation were 

significantly different than today 

McKay et al. 2012 

  2.9 to 2.0 Ma  Up to +3°C  Sjunneskog and 

Winter 2012 

Extant diatoms  4.5 to 4.1 Ma Sørsdal 

Formation 

−1.8 to +5°C 

(summer temperatures 

>+3°C) 

Stratified open water conditions 

during summer/spring with 

significant reduction of sea ice 

Whitehead et al. 2001 

Sea-ice associated 

diatoms 

   Sørsdal 

Formation 

 +1 to +2°C 

 

Low abundance of these diatoms 

suggest reduced sea ice conditions/ 

similar to present day Kerguelen 

Plateau values 

Whitehead et al. 2001 

Vertebrates Extinct dolphins 

(Australodelphis mirus)  

Similar modern fauna are 

found in waters +4 to 

+5°C near the APFZ. 

Nothing suggests they 

were functionally adapted 

to cold water; at least 

seasonally absent sea ice  

4.5 to 4.1 Ma  Marine Plain Up to +4 to +5°C 

(based on closest 

living relative) 

Open water environment, based on 

closest living relative, suggests 

seasonally absent sea ice 

Adamson and Pickard 

1983; Quilty et al. 

1990; Quilty 1991; 

Quilty 1993; Fordyce 

et al. 2002 

Barnacles Bathylasma 

corolliforme 

Relatively large (up to 10 

cm) with a benthic 

habitat. Found in limited 

localities in the northern 

part of the Antarctic 

Peninsula 

2.6 to 2.4 Ma McMurdo Sound  Grounded ice-free environment Jonkers 1998; Burgess 

et al. 2010; 

Smithsonian Natural 

History Museum 

Antarctic Invertebrates 

Coccolithophorids   4.5 to 4.1 Ma Sørsdal 

Formation 

<+5°C Lack of these may indicate cooler 

temperatures 

Whitehead et al. 2001 
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Table 4. Proxy data from Pliocene coastal Antarctic sites with associated interpretations about temperature and sea ice (where available) during this time. Note 

that some proxies are described at species-level while others are more general. NADW – North Atlantic Deep Water, OHT – Ocean heat transport, APFZ – Antarctic 

Polar Frontal Zone
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6.1 Sea Surface Temperatures 

Many proxies discussed here suggest maximum temperatures warmer than present 

during particular intervals in the Pliocene. Some of them also indicate, either from direct 

measurements (e.g. stable oxygen isotope measurements from A. anderssoni in Williams et 

al. 2010) or indirectly using species tolerances (e.g. the ratio of Dictyocha/Distephanus used 

by Whitehead and Bohaty 2003), that there was a reduction in sea ice during these warmer 

intervals. These data have been sourced from various environments both on land (deposits 

discussed in this paper), in shallow marine deposits, and beneath the ocean from core 

material. Available data, though, still remain sparse.   

A number of proxies have converging temperature data; for example maximum 

temperatures of up to +5°C during the summer months have been calculated in deposits of 

overlapping ages (4.6 to 3.3 Ma) in Prydz Bay, the Vestfold Hills, Ross Sea and the western 

Antarctic Peninsula margin using silicoflagellates (Whitehead and Bohaty 2003; Escutia et al. 

2009), diatoms (Whitehead et al. 2001; Scherer et al. 2010), and vertebrates (Quilty et al. 

1990; Quilty 1991; Quilty 1993); see Table 4 for details. These same data also indicated a 

reduction in sea ice and open ocean conditions during the summer months. 

The Pliocene sections presented here do not seem to provide evidence for temperature 

trends (cooling, warming) through the Pliocene, but as the ages of some deposits are only 

loosely constrained while others are only defined as ‘Pliocene deposits,’ this is to be 

expected. This is in contrast to evidence from the ANDRILL AND-1B core which shows 

generally warmer conditions with reduced sea ice extent and a smaller West Antarctic Ice 

Sheet (WAIS) before 3.3 Ma followed by coastal cooling of ~2.4°C, with increasingly more 

persistent sea ice between 3.3 and 2.6 Ma (McKay et al. 2012). Land-based data discussed in 

this paper, however, shows evidence for periods of warmth (4.6 to 3.3 Ma as mentioned 

previously) that can be seen in different regions at approximately the same time, including 

one of the warm periods (5.03 to 4.22 Ma) recognised by Smellie et al. (2006).  

6.2 Seasonality 

Present temperature measurements around the Antarctic coast indicate relatively 

consistent mean temperatures with slight variability in maximum temperatures recorded and 

greater seasonal ranges in some areas (See Table 1 for more details). Minimum temperatures 

are predominantly just above the freezing point of sea water as most coastal regions are only 
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covered by seasonal sea ice. When compared to the proxies from the Pliocene discussed in 

this paper there are obvious differences, especially between maximum temperatures and 

seasonal ranges. Some proxies such as the bivalves (based on the range of calculated 

temperatures from δ
18

O isotopes: Williams et al. 2010) and extant diatoms (based on the 

abundance and known temperature tolerances; Whitehead et al. 2001) have temperatures that 

overlap with modern day ranges in their minimum values (-1.1°C and -1.8°C respectively) 

but many of the proxies show significantly higher (up to 5°C) summer maximum 

temperatures during the warmer intervals of the Pliocene. The greater amplitude between 

maximum and minimum SSTs inferred for Antarctica for the late Neogene, which today is 

characterised by only subtle seasonal SST variations throughout the year, indicates that there 

seasonality during the Pliocene was much more pronounced than today.  

6.3 Sea Ice 

Evidence for sea ice coverage around the coast of Antarctica during the Pliocene is 

very limited. The United States Geological Survey PRISM (Pliocene Research, 

Interpretation, and Synoptic Mapping) palaeoclimate reconstruction shows winter sea ice 

between 4 and 6° latitude farther south than present and minimal summer sea ice during the 

warm mid-Piacenzian Stage (3.264-3.025 Ma; Dowsett 2007). This was based on the 

extrapolation of increased SSTs from a southward shift of the polar fronts, seen in Southern 

Ocean diatom records (Barron 1996). Reduced sea ice during Pliocene interglacial periods 

has been inferred from the presence of fast-growing Chlamys bivalves due to their shell 

morphology and substrate preference (Jonkers 2003; Berkman et al. 2004), detailed 

morphological and geochemical analysis of Austrochlamys (Williams et al. 2010) and Mean 

Annual Range of Temperature (MART) analysis from bryozoan colonies (Clark et al. 2010) 

(see Table 4 for more details). Enhanced opal depositional rates, which have been linked to 

an increase in biological productivity between ~5 and 3.1 Ma, also suggest a reduction in sea 

ice cover (Hillenbrand & Ehrmann 2005). In addition, the ANDRILL AND-1B core contains 

a thick diatomite unit with abundant diatoms that may indicate surface waters warmer than 

today (McKay et al. 2012). Along with TEX86 SST of up to 5°C this suggests the absence or 

restriction of sea ice throughout prolonged intervals (McKay et al. 2012). Whitehead et al. 

(2005) also suggested that winter sea-ice concentrations were up to 78% less, relative to 

modern conditions, based on the diatom Eucampia antarctica index (McCullagh and Nelder 

1989) measured at Ocean Drilling Program (ODP) Sites 1165 and 1166.   
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7. Climate model simulations of Pliocene environmental conditions on the Antarctic 

shelf 

The Pliocene Model Intercomparison Project (PlioMIP) represents the first coordinated 

multi-model study of a warmer-than-modern, significantly above pre-industrial atmospheric 

CO2 (405 ppmv) palaeoclimate (Haywood et al. 2013). It includes 8 coupled atmosphere-

ocean general circulation model (GCM) simulations of the mid-Piacenzian warm period, with 

boundary conditions taken from the PRISM3 (Pliocene Research, Interpretation and Synoptic 

Mapping) reconstruction (Haywood et al. 2011). The peak-averaged SST warming in this 

interval has been quantified from multi-proxy studies by the PRISM project (Dowsett et al. 

2010), providing a large number of marine SST estimates. These are globally correlated, if 

non-contemporaneous, as a target for GCMs (Dowsett et al. 2012; Haywood et al. in press). 

Comparisons between synthesized late Neogene Antarctic shelf data and the multi-model 

SST estimates of PlioMIP Experiment 2, although not providing a direct data-model 

comparison, allow the SST estimates presented here to be placed in the wider context of our 

understanding of Pliocene warming. 

Comparisons between the SST warming in each of the three regions represented in the 

marine palaeontological record of the Antarctic shelf and the PlioMIP climate simulations 

show a good concordance (Table 5). SSTs in both the northern Peninsula and the Prydz Bay 

regions show an excellent match (defined as overlapping temperature ranges) with the 

palaeontological estimates. Winter temperatures are little changed from modern (Fig 8), 

primarily as some seasonal sea-ice can be found in both regions. Summer SSTs in the models 

are significantly increased throughout the Southern Ocean and especially on the Antarctic 

shelf (Fig 8), where little sea-ice survives throughout the year. The exceptions to this 

enhanced summer warming are the southern Weddell Sea and, in a few models, the western 

Ross Sea. In these regions, the proximity of the remaining parts of the large EAIS and the 

relatively enclosed nature of the embayments mean that sea ice can survive all year.  

This feature of the western Ross Sea does not seem to be reflected in the SST estimates 

from that region, with summer temperatures estimated to have been 4 C°  to 5 C° warmer 

(McKay et al. 2012). The disparity between model and data may show the limitations of the 

comparisons that are currently possible. Although there may have been ice-free periods at the 

drill site during the Piacenzian, this interval is characterised by a series of erosional horizons, 

showing that the grounded ice sheet periodically advanced through this site. In the early 
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Pliocene, (seasonally) open-water conditions lasted through a series of orbital cycles. Best 

estimates suggest that these ice-free periods in the western Ross Sea lasted for hundreds of 

thousands of years in intervals between 4.5 and 3.4 Ma (Scopelliti et al. 2013). Although 

many circumstances could have caused cooling between the early and late Pliocene (e.g. 

Sjunneskog and Winter 2012), it has been shown that the closure of the Panama Seaway 

during the Pliocene would cool the western Ross Sea region by up to 2°C (Lunt et al. 2008). 

The mean annual SST warming reconstructed from proxy analyses on Pliocene marine 

sections in onshore outcrops also seems to show slightly more warming than is produced in 

the PlioMIP models. However, the dating of these deposits is not very well constrained and it 

is possible that they also refer to warmer periods before the mid-Piacenzian interval. 

Antarctic 

Region 

Large Neogene Warming 

Parameter 

Palaeontological Warming 

Estimate (C°) 

PlioMIP 

Warming (C°) 

N
E

. 

P
en

in
su

la
 

MASST - 1 – 6 

SSTmin 1 0 – 5 

SSTmax 0 – 8 2 – 8 

P
ry

d
z 

B
a

y
 

MASST 2 – 7 0 – 4 

Minimum SST 0 0 – 3 

Maximum SST 2 – 4 0 – 5 

W
. 

R
o

ss
 

S
ea

 

MASST 3 0 – 2 

Minimum SST 4 – 5 0 – 1 

Maximum SST - 0 – 5 

Table 5 Comparison between palaeontological proxy estimates of late Neogene Antarctic shelf warming 

and regional estimates from the PlioMIP Experiment 2 ensemble (Haywood et al. 2013). Palaeontological 

warming estimates have been standardised to be warming above observed modern SSTs (Table 1). An 

excellent match is defined by an overlapping of these ranges.   

7.1 Possible Explanations of Warmer Antarctic Coastal Conditions during the Late 

Neogene 

The late Neogene was a time of generally warmer global temperatures than present, 

with persistent fluctuations associated with variations in the Earth’s orbit that were of lower 

amplitude than in the Pleistocene (e.g. Lisiecki and Raymo 2005; Naish et al. 2009). During 

warmer intervals, for example the mid-Piacenzian warm period (defined by PRISM as 3.246 

to 3.025 Ma; Dowsett et al. 2010), the average global surface temperature was 2 C° to 3 C°  

(Jansen et al. 2007) warmer than pre-industrial. There are many hypotheses about what 

conditions may have driven this warming and it is likely that there was more than one forcing 

mechanism at work. Suggestions for the cause of Pliocene warmth include loss of permanent 
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Arctic sea ice (Raymo et al. 1990), increased atmospheric CO2 concentrations (Crowley 

1991), lower mountain altitudes in North America and Tibet (Rind and Chandler 1991), 

increased northwards heat transport by the oceans (Dowsett et al. 1992), closure of the 

Panama ocean gateway (Haug and Tiedemann 1998), opening of the Indonesian seaway 

(Cane and Molnar 2001), changes in global ice cover (Haywood and Valdes 2004), 

permanent El Niño in the tropical Pacific (Wara et al. 2005) and vegetation feedbacks 

(Haywood & Valdes 2006), perhaps associated with changes in terrestrial biomass (Mudelsee 

and Raymo 2005). The most widely accepted mechanisms are linked to elevated atmospheric 

CO2 concentrations leading to greenhouse warming or changes in ocean heat transport 

(Haywood et al. 2007). 

 

An increase in meridional ocean heat transport was suggested as being a major 

contributing factor to Antarctic warming in the Pliocene, based on records of North Atlantic 

SST (Dowsett et al. 1992; Kwiek and Ravelo 1999; Ravelo and Andreasen 2000; Haywood et 

al. 2000). Despite the extensive data supporting this process it has not always been replicated 

by GCMs, which instead show some tropical warming with more moderate polar 

amplification (Zhang et al. 2013).  

 

The general consensus for atmospheric CO2 levels during the Pliocene is for a range 

from 360 to 400 ppmv, significantly higher than pre-industrial values of 280 ppmv, but 

comparable to present. These values have been established using a number of different 

proxies including δ¹³C ratios of organic compounds and boron isotopes in calcareous 

foraminifera tests (Raymo and Rau 1992; Raymo et al. 1996; Pagani et al. 2009; Seki et al. 

2010; Bartoli et al. 2011) and the stomata density on fossil plant leaves (Van der Burgh et al. 

1993; Kürschner et al. 1996). Other studies have conversely suggested that concentrations 

were lower and closer to that during the Last Glacial Maximum (Pearson & Palmer 2000). 

Naish et al. (2009) provide evidence from the AND-1B sediment core that the WAIS 

was directly influenced by orbitally-induced oscillations causing periodic collapses of the ice 

sheet, resulting in open water conditions in the Ross embayment. They suggest that obliquity 

cycles may regulate the southward distribution and upwelling of Circumpolar Deep Water 

(CDW), inducing melting of the WAIS. Collapse of ice shelves buttressing the EAIS 

probably resulted in glacier flow acceleration and retreat of this ice sheet, too (Hill et al., 

2007). The widespread ice-sheet melting may have led to feedbacks that drove much of the 
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Neogene ocean warming seen in the fossil records (cf. Joughin and Alley 2011). The exact 

details of such feedbacks, however, are still unknown (Joughin and Alley 2011). 

More speculative theories include Southern Ocean circulation changes such as 

increases in eddies and jets within the main current of the ACC (Thompson 2008) and the 

southward migration of the Antarctic Polar Frontal Zone (APFZ) (Whitehead and McMinn 

2002).  Eddies can be up to 500 km in diameter and persist for months, sometimes 

transporting warmer water into the Southern Ocean. Hogg et al. (2008) suggest that pole ward 

eddy heat flux, increased by greater wind stress, has a relatively large effect on the overall 

temperature in the Southern Ocean and may have contributed to the recent warming. During 

warmer intervals in the Pliocene it has been suggested that the APFZ migrated south by 

approximately 900 km, the temperature gradient was significantly shallower, or there was 

some combination of the two (Whitehead and McMinn 2002). This is thought to be 

responsible for a temperature increase of 3 C° to 4 C° between 55° and 60°S (Barron 1996; 

Bohaty and Harwood 1998; Whitehead and McMinn 2002). However, a southward shift in 

the APFZ is difficult to achieve, especially in regions such as the Kerguelen Plateau due to 

topographical limitation preventing such a shift (Barker and Thomas 2004). 

8. Conclusions  

Fossil proxy data have been sourced from a range of shallow marine sedimentary 

deposits of late Neogene age around the margins of the Antarctic continent, but the database 

remains sparse and fragmentary both from a temporal and spatial context.  Many proxies 

evaluated in this paper suggest that at times during the late Neogene, SSTs were significantly 

warmer than at present. Proxies for bivalves (e.g. A. anderssoni in Williams et al. (2010) or 

indirectly using species tolerances (e.g. dolphin fossils in Quilty et al. (1990), suggest that 

there was a reduction in sea ice during warmer intervals. Though the temporal dataset is 

fragmentary, there does not seem to be significant evidence for temperature trends either 

towards a long-term cooling or warming through the Pliocene. There is, however, evidence 

for periods of warmth (4.6 to 3.3 Ma) that can be seen in different regions at approximately 

the same time (assuming the ages of the deposits are reliably constrained). Comparisons 

between the SST warming in each of the three regions represented in the marine 

palaeontological record of the Antarctic shelf and the PlioMIP climate simulations show a 

good concordance (Table 5), particularly SSTs in both the northern Antarctic Peninsula and 

Prydz Bay regions. Winter temperatures are very similar to modern. Differences between 
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model and proxy data (e.g. in the Weddell Sea and western Ross Sea) reveal the temporal and 

geographical limitations of the comparisons that are currently possible. The most accepted 

mechanisms for causing such warming are an increase in atmospheric CO2 concentrations 

leading to greenhouse warming and/or an increase in meridional ocean heat transport to the 

poles.  
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Figures 

Fig 1 Maximum (August) and minimum (February) sea-ice extent. Solid line: minimum sea 

ice extent in 2012, dashed line: maximum sea ice extent in 2011. Winter sea ice has changed 

very little but summer sea ice has increased since the late 1970s. (Free data from the National 

Snow and Ice Data Center (Fetterer et al.; www.nsidc.org); data analysis and diagram 

courtesy of Robert Cooper, British Geological Survey) 
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Fig 2 Onshore geographical distribution of late Neogene shallow marine macro-fossil-bearing sites of the Antarctic. EAIS – East Antarctic Ice 

Sheet, WAIS – West Antarctic Ice Sheet, APIS – Antarctic Peninsula Ice Sheet. Localities summarised from: Jonkers (1998). Schematic 

stratigraphic columns (not to scale) for each main macro-fossil-bearing locality showing generalised lithology and ages where known (see Fig 2 

for more age details). Cockburn Island: (Jonkers and Kelley 1998), James Ross Island: (Pirrie et al. 1997; Smellie et al. 2006; Nỳvlt et al. 2011), 

Larsemann Hills: (Webb 1974; Quilty et al. 1990; McMinn and Harwood 1995), Vestfold Hills: (Colhoun et al. 2010; Quilty et al. 2000; 

Whitehead et al. 2001; Whitehead et al. 2004; Whitehead et al. 2006b), Wright Valley: (Prentice et al. 1993), McMurdo Sound: (Eggers 1979; 

Leckie and Webb 1979)  
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Fig 3 Stratigraphic setting of late Neogene successions that yield shallow marine fossils. 

Formations are placed in their most likely chronostratigraphic position, but note that the grey 

arrows denote the degree of stratigraphic uncertainty. Age of boundary shown above or 

below line. Only sedimentary deposits have been shown as these contain the fossil material 

discussed. Correlated using data from (Gradstein et al. 2012) and benthic δ
18

O isotope stack 

LR04 (Lisiecki and Raymo 2005). Data for the Antarctic Peninsula is from Smellie et al. 

(2006); Nỳvlt et al. (2011), Cockburn Island: (Jonkers and Kelley 1998; Pirrie et al. 2011; 

Levy et al. 2012), Vestfold Hills: (Quilty et al. 1990; Quilty et al. 2000; Whitehead et al. 

2001; Whitehead et al. 2004; Whitehead et al. 2006b; Cody et al. 2008; Colhoun et al. 2010), 

Larsemann Hills: (Webb 1974; Quilty et al. 1990; McMinn and Harwood 1995), McMurdo 

Sound: (Eggers 1979; Leckie and Webb 1979), Wright Valley: (Haq et al. 1987; Baldauf et 

al. 1991; Harwood et al. 1992; Prentice et al. 1993; Cody et al. 2008) 
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Fig 4 Marine Plain. (a) Coarse Quaternary material overlying the Pliocene succession (Scale: 

height of circled Adelie penguins ~60 cm), (b) general environment, ice-covered pond in the 

foreground is the site of the first whale fossil discovery (Scale: circled tents in background) 
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Fig 5 Map of Pliocene fossil-bearing deposits in the Prydz Bay region. Larsemann Hills, 

Marine Plain and Heidemann Valley (in bold). (Courtesy of Henk Brolsma, Australian 

Antarctic Division) 
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Fig 6 (a) Diamict overlain by volcanic deposits at Forster Cliffs (Loc D6.404; 3 in this paper) 

(people circled for scale), (b) shell fragment (arrowed) within diamict at Cascade Cliffs (Loc 

D6.405; 6 in this paper) (scale bar is 2 cm), (c) scallop shells found stacked between volcanic 

clasts at South Blancmange Hill (Loc D6.407; 4 in this paper), (d) stacked glacigenic debris 

flows containing macrofossil material at South Blancmange Hill (scale bar is 1 m), (e) 

articulated Austrochlamys shell suggesting little or no reworking at South Blancmange Hill. 

(Nelson et al. 2009)  
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Fig 7 (a) A bryozoan colony encrusting a clast of the James Ross Island Volcanic Group from 

James Ross Island (Forster Cliffs, locality 3 in this paper), Antarctic Peninsula (Clark et al. 

2010), (b) an Austrochlamys bivalve from Cockburn Island (Williams et al. 2010). Scale bars 

are 2 cm 
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Fig 8 PlioMIP Experiment 2 multi-model mean Pliocene SST warming above pre-industrial 

around the Antarctic (i.e. Pliocene minus pre-industrial). (a) annual mean warming, (b) 

February warming and (c) August warming. Sea-ice extent is not shown. For full description 

of PlioMIP experiments and simulations see Haywood et al. (2013) 

 


