84 research outputs found

    Economic laws of division and changing the labor in the system of contemporary vocational education determination

    Full text link
    The topical character of the problem in question is stipulated by the demand of highly skilled competitive personnel in the vocational education sphere of modern society, which is determined by the totality of objective and subjective factors of its development. The goal of the present research consists in the verification of the economic laws of division and change of the labor, that produce an immediate impact on the vocational education development strategy and a mediated impact on the requirements made to the personality of a student within this system. The primary method of investigation in the given area is the modelling method that allows to identify specific features of these laws’ operation depending on the historical period of social development and extrapolate their functioning on the present-day reality as well as make scientifically-based forecasts of its future development. Research outcomes: the article presents a structural functional model of the interaction of the economic laws of division and changing the labor during the industrial and post-industrial periods of social development; an algorithm of competently mature personality’s character formation in the modern system of vocational education. Materials of the research may prove useful to the rule-making specialists and practitioners in the educational sphere – in elaborating and upgrading educational and professional standards, in developing a model for the preparation of future competitive workers in the system of vocational education based on the objective factors of its development, such as the economic laws of division and change of the labor. © 2016 Ronzhina et al

    Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution

    Get PDF
    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids

    Solvation free energy profile of the SCN- ion across the water-1,2-dichloroethane liquid/liquid interface. A computer simulation study

    Get PDF
    The solvation free energy profile of a single SCN- ion is calculated across the water-1,2-dichloroethane liquid/liquid interface at 298 K by the constraint force method. The obtained results show that the free energy cost of transferring the ion from the aqueous to the organic phase is about 70 kJ/mol, The free energy profile shows a small but clear well at the aqueous side of the interface, in the subsurface region of the water phase, indicating the ability of the SCN- ion to be adsorbed in the close vicinity of the interface. Upon entrance of the SCN- ion to the organic phase a coextraction of the water molecules of its first hydration shell occurs. Accordingly, when it is located at the boundary of the two phases the SCN- ion prefers orientations in which its bulky S atom is located at the aqueous side, and the small N atom, together with its first hydration shell, at the organic side of the interface

    Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations

    Get PDF
    Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F−, Cl−, Br−, and I−) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Åqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4PEW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells

    Salting-in with a salting-out agent : explaining the cation specific effects on the aqueous solubility of amino acids

    Get PDF
    Although the understanding of ion specific effects on the aqueous solubilities of biomolecules is crucial for the development of many areas of biochemistry and life sciences, a consensual and well-supported molecular picture of the phenomena has not yet been established. Mostly, the influence of cations and the nature of the molecular interactions responsible for the reversal of the Hofmeister trend in aqueous solutions of amino acids and proteins are still defectively understood. Aiming at contributing to the understanding of the molecular-level mechanisms governing the cation specific effects on the aqueous solubilities of biocompounds, experimental solubility measurements and classical molecular dynamics simulations were performed for aqueous solutions of three amino acids (alanine, valine, and isoleucine), in the presence of a series of inorganic salts. The evidence gathered suggests that the mechanism by which salting-in inducing cations operate in aqueous solutions of amino acids is different from that of anions, and allows for a novel and consistent molecular description of the effect of the cation on the solubility based on specific interactions of the cations with the negatively charged moieties of the biomolecules

    Specific Anion and Cation Binding to Lipid Membranes Investigated on a Solid Supported Membrane

    No full text
    Ion binding to a lipid membrane is studied by application of a rapid soln. exchange on a solid supported membrane. The resulting charge displacement is analyzed in terms of the affinity of the applied ions to the lipid surface. The authors find that chaotropic anions and kosmotropic cations are attracted to the membrane independent of the membrane compn. In particular, the same behavior is found for lipid headgroups bearing no charge, like monoolein. This general trend is modulated by electrostatic interaction of the ions with the lipid headgroup charge. These results cannot be explained with the current models of specific ion interactions
    corecore