21 research outputs found

    Structure identification of interval differential operators

    Get PDF
    Розглянуто особливості структурної ідентифікації інтервальних різницевих операторів. Введено основні показники «якості» структури інтервального різницевого оператора, проведено їх аналіз, а також зроблено формальну постановку задачі структурної ідентифікації. Для оцінювання якості структури інтервального різницевого оператора розглянуто критерії адекватності, складності, точності та повноти. На відміну від статичних систем у випадку ідентифікації інтервального різницевого оператора за умов структурної невизначеності задача ускладнюється вибором порядку різницевого оператора.The features of structure identification of interval differential operator is considered. The main indicators of "quality" of the structure of interval differential operator is presented, its analysis and the formal raising of task of structure identification is also made. Criteria of adequacy, complexity, accuracy and completeness are considered for evaluation of the quality of structure interval difference operator. In contradiction to static systems in the case of identification of interval difference operator by condition of structure vagueness the task is complicated by the choice of order of difference operator

    Modulation of γ- and β-Secretases as Early Prevention Against Alzheimer's Disease

    Get PDF
    The genetic evidence implicating amyloid-β in the initial stage of Alzheimer's disease is unequivocal. However, the long biochemical and cellular prodromal phases of the disease suggest that dementia is the result of a series of molecular and cellular cascades whose nature and connections remain unknown. Therefore, it is unlikely that treatments directed at amyloid-β will have major clinical effects in the later stages of the disease. We discuss the two major candidate therapeutic targets to lower amyloid-β in a preventive mode, i.e., γ- and β-secretase; the rationale behind these two targets; and the current state of the field

    Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons

    Get PDF
    Background: The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer’s disease. However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L. Methods and results: We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1 substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L) were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation, demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice. Conclusions: This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice

    The case for low-level BACE1 inhibition for the prevention of Alzheimer disease

    Get PDF
    Alzheimer disease (AD) is the most common cause of dementia in older individuals (>65 years) and has a long presymptomatic phase. Preventive therapies for AD are not yet available, and potential disease-modifying therapies targeting amyloid-β plaques in symptomatic stages of AD have only just been approved in the United States. Small-molecule inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; also known as β-secretase 1) reduce the production of amyloid-β peptide and are among the most advanced drug candidates for AD. However, to date all phase II and phase III clinical trials of BACE inhibitors were either concluded without benefit or discontinued owing to futility or the occurrence of adverse effects. Adverse effects included early, mild cognitive impairment that was associated with all but one inhibitor; preliminary results suggest that the cognitive effects are non-progressive and reversible. These discontinuations have raised questions regarding the suitability of BACE1 as a drug target for AD. In this Perspective, we discuss the status of BACE inhibitors and suggest ways in which the results of the discontinued trials can inform the development of future clinical trials of BACE inhibitors and related secretase modulators as preventative therapies. We also propose a series of experiments that should be performed to inform ‘go–no-go’ decisions in future trials with BACE inhibitors and consider the possibility that low levels of BACE1 inhibition could avoid adverse effects while achieving efficacy for AD prevention

    Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons

    Get PDF
    Background: The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer’s disease. However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L. Methods and results: We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1 substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L) were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation, demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice. Conclusions: This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice

    BACE2 distribution in major brain cell types and identification of novel substrates

    Get PDF
    β-Site APP-cleaving enzyme 1 (BACE1) inhibition is considered one of the most promising therapeutic strategies for Alzheimer's disease, but current BACE1 inhibitors also block BACE2. As the localization and function of BACE2 in the brain remain unknown, it is difficult to predict whether relevant side effects can be caused by off-target inhibition of BACE2 and whether it is important to generate BACE1-specific inhibitors. Here, we show that BACE2 is expressed in discrete subsets of neurons and glia throughout the adult mouse brain. We uncover four new substrates processed by BACE2 in cultured glia: vascular cell adhesion molecule 1, delta and notch-like epidermal growth factor-related receptor, fibroblast growth factor receptor 1, and plexin domain containing 2. Although these substrates were not prominently cleaved by BACE2 in healthy adult mice, proinflammatory TNF induced a drastic increase in BACE2-mediated shedding of vascular cell adhesion molecule 1 in CSF. Thus, although under steady-state conditions the effect of BACE2 cross-inhibition by BACE1-directed inhibitors is rather subtle, it is important to consider that side effects might become apparent under physiopathological conditions that induce TNF expression

    Rare Species of Vascular Plants, Protected and Supported the Protection of the Volyn Eegion

    Get PDF
    У результаті проведених польових досліджень виявлено і задокументовано місцезнаходження видів рослин, які рідко трапляються у Волинській області або перебувають на межі ареалу і не включені до попереднього списку рідкісних рослин території дослідження. Складено узагальнений список видів судинних рослин, що охороняються і рекомендовані до охорони у Волинській області. As a result of field studies have found and documented place of growth of plant species which are rare in the Volyn region, or are on the border area and were not included in the provisional list of rare plants studed area. The summary list of vascular plant species are protected and recommended for protection in the Volyn region is compiled.Роботу виконано на кафедрі ботаніки і садово-паркового господарства ВНУ ім. Лесі Українк

    AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model

    Get PDF
    Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood–brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer’s disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer’s mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets

    BACE2 distribution in the brain and identification of its substrates

    No full text
    status: publishe
    corecore