84 research outputs found

    Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    Get PDF
    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (LaxAl1-xOy) grown by spray pyrolysis in ambient atmosphere at 440 C. The structural, electronic, optical, morphological, and electrical properties of the LaxAl1-xOy films and devices as a function ofthe lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As deposited LaAlOy dielectrics exhibit a wide band gap (6.18eV), high dielectric constant (k~16),low roughness (1.9 nm), and very low leakage currents (106, subthreshold swing of 650 mV dec-11, and electron mobility of 12 cm2 V-1 s-1

    Fabrication and examination of oxidation resistance of zinc coated copper and brass components by chemical deposition

    Get PDF
    n this work, the structure and the oxidation resistance of Zn deposited Cu and brass metallic components are examined. The deposition was accomplished with pack cementation chemical deposition. The examination of the samples was performed with electron microscopy and X-ray diffraction analysis. It was found that coatings on Cu substrate consist of two layers with different Zn concentrations, while coatings on brass were single layered with almost constant Zn concentration. The presence of distinct Znā€”Cu phases was revealed in both cases. The subjection of the as coated samples together with the uncoated substrates in air at 400ĀŗC showed that both Zn coated samples have enhanced resistivity in such atmospheres, as most of the coating remained mostly unoxidised, and the substrates were fully protected. On the contrary, the bare substrates appear to have undergone severe damage as brittle oxides were formed on their surface.Publicad

    Solution processed SnO2:Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes

    Get PDF
    Here we present the deposition of antimony-doped tin oxide thin films using the ambient spray pyrolysis technique and demonstrate their implementation as transparent electrodes (anodes) in red, green and blue Organic Light emitting diodes. The films were spray coated at 380 oC from SnCl4 and SbCl3 solution blends in methanol and āˆ¼230 nm thick films were investigated by means of x-ray diffraction, AFM, UV-Vis absorption spectroscopy, 4-point probe, Hall Effect and Kelvin Probe. It was found that for optimum antimony doping in the precursor solution of āˆ¼2 wt%, the as-deposited ATO films exhibit excellent characteristics such as low surface roughness of RRMSāˆ¼6.3 nm, high work function (āˆ¼ -5.03 eV), wide direct band gap (āˆ¼4.2 eV), high transparency in the visible spectrum in excess of 85 % on glass, low sheet resistivity (āˆ¼32 Ohms/sq), high charge carrier concentration (āˆ¼6.35 Ɨ 10^20 cm-3) and carrier mobility of āˆ¼32 cm2 V-1 s-1. Furthermore, the electrical and optical performance i.e. the turn on voltage and external quantum efficiency of red, green and blue OLEDs fabricated on optimized SnO2:Sb films were identical to those of OLEDs fabricated on commercially available ITO (Rsāˆ¼15 Ohms/sq) and were found to be in excess of 11 %, 0.3 % and 13 % for red, green and blue OLEDs respectivel

    Tailoring Ca-Based Nanoparticles by Polyol Process for Use as Nematicidals and pH Adjusters in Agriculture

    Get PDF
    The remarkable progress in nanotechnology has extended the application of inorganic nanoparticles (NPs) in the agriculture sector, as both economically sustainable and environmentally sound alternatives. Root knot nematodes are undoubtedly a foremost problem of agriculture, and research strives to develop effective materials to tackle this issue. Herein, the microwave-assisted selective polyol synthesis of different compositions of Ca-based NPs, Ca(OH)2, Ca(OH)2/CaCO3, and CaCO3 is reported and the products were evaluated as nematicides and pH adjusters. Two precursors (CaCl2 and Ca(NO3)2) and three polyols (1,2-propylene glycol (PG), tetraethylene glycol (TEG), polyethylene glycol (PEG 8000)) that differ in their redox potential have been utilized to provide selectivity over composition. On the basis of the utilized polyols, NPs are produced as inorganic/organic hybrid formulations with a biocompatible organic coating that provides increased colloidal stability and controlled release of active components. Characterization of NPs has been carried out by XRD, TGA, FTIR, TEM, and pH-metry. Each composition exhibited different pH changing ability, an essential feature for agrochemical applications. The in vitro nematicidal activity of Ca(OH)2, Ca(OH)2/CaCO3, and CaCO3NPs was evaluated on second stage juveniles (J2) of two Meloidogyne species (Meloidogyne incognita and Meloidogyne javanica) based on nematode paralysis experiments. Results unveiled nematicidal activity for all evaluated Ca-based NPs, while Ca(OH)2 and CaCO3 NPs appeared to be the most and the least effective ones, respectively. The nematicidal effect appears to be boosted by the release of [OH]- anions, as indicated by pH-metric measurements, displaying the crucial role of [OH]- anions in their nematicidal activity

    Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering

    Get PDF
    Perhaps the simplest method for creating metal nanoparticles on a substrate is by driving their self-assembly with the thermal annealing of a thin metal film. By properly tuning the annealing parameters one hopes to discover a recipe that allows the pre-determined design of the NP arrangement. However, thermal treatment is known for detrimental effects and is not really the manufacturer's route of choice when it comes to large-scale applications. An alternative method is the use of microwave annealing, a method that has never been applied for metal processing, due to the high reflectance of microwave radiation at the surface of a metal. However, in this work we challenge the widely used nanostructuring methods by proving the microwave's annealing ability to produce plasmonic templates, out of extremely thin metal films, by simply using a domestic microwave oven apparatus. We show that this process is generic and independent of the deposition method used for the metal and we further quantify the suitability of these plasmonic templates for use in surface-enhanced Raman scattering applications

    Laser-driven structural modifications and diffusion phenomena of plasmonic AlN/Ag stratified films

    Get PDF
    Laser annealing (LA) of AlN/Ag multilayers was proven to be an effective process to control the structure and dispersion of Ag into the AlN resulting in intense coloration via the localized surface plasmon resonance, which is of particular importance for decorative applications. In this work we present a study of the structural changes occurring in various AlN/Ag multilayers after LA, in an effort to establish firm knowledge of the diffusion and re-nucleation mechanisms that occur during the laser process. We investigate the effect of the basic LA parameters, such as the laser wavelength (193 and 248 nm), fluence (400ā€“700 mJ/cm2), pressure (1 and 10 Bar) and number of pulses (1 and 2) and we show that the main processes is the Ag particle enhancement close to the film surface as a result of additive outidiffusion Ag and the formation of nanoparticles of varying size

    Sub-surface laser nanostructuring in stratified metal/dielectric media: a versatile platform towards flexible, durable and large-scale plasmonic writing

    Get PDF
    Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications. Keywords : Ceramic materials; Composite films; Environmental technology; Film growth; Film preparation; Multilayer films; Multilayers; Nanocrystals; Optical data processing; Plasmons; Silver; Substrates; Surface plasmon resonance; Thin films; Ultrathin films, Laser annealing; Localised surface plasmon resonance; Multi-layer thin film; Nano-structuring; Plasmonics, Nanocomposite film

    Polymer Lightā€Emitting Transistors With Chargeā€Carrier Mobilities Exceeding 1 cm2 Vāˆ’1 sāˆ’1

    Get PDF
    The vast majority of conjugated polymer-based light emitting field-effect transistors (LEFETs) are characterized by low charge carrier mobilities typically in the range 10-5 to 10-3 cm2 V-1 s-1 range. Fast carrier transport is a highly desirable characteristic for high frequency LEFET operation and, potentially, for use in electrically-pumped lasers. Unfortunately, high mobility organic semiconductors are often characterised by strong intermolecular Ļ€-Ļ€ interactions that reduce luminescence. Development of new materials and/or device concepts that overcome this hurdle are therefore required. We report single organic semiconductor layer, light-emitting transistors that combine the highest hole mobilities reported to date for any polymer-based LEFET, with encouraging light emission characteristics. We achieve this in a single polymer layer LEFET, which was further enhanced through the use of a small-molecule/conjugated polymer blend system that possesses a film microstructure which supports enhanced charge carrier mobility (3.2 cm2 V-1 s-1) and promising light emission characteristics (1600 cd m-2) as compared to polymer-only based LEFETs. This simple approach represents an attractive strategy to further advance the performance of solution-processed LEFETs

    Synthesis and biological evaluation of PEGylated CuO nanoparticles

    Get PDF
    There is a growing field of research into the physicochemical properties of metal oxide nanoparticles (NPs) and their potential use against tumor formation, development and progression. Coated NPs with biocompatible surfactants can be incorporated into the natural metabolic pathway of the body and specifically favor delivery to the targeted cancerous cells versus normal cells. Polyethylene glycol (PEG) is an FDA approved, biocompatible synthetic polymer and PEGylated NPs are regarded as ā€œstealthā€ nanoparticles, which are not recognized by the immune system. Herein, PEGylated cupric oxide nanoparticles (CuO NPs) with either PEG 1000 or PEG 8000 were hydrothermally prepared upon properly adjusting the reaction conditions. Depending on the reaction time CuO NPs in the range of core sizes 11ā€“20 nm were formed, while hydrodynamic sizes substantially varied (330ā€“1120 nm) with improved colloidal stability in PBS. The anticancer activity of the NPs was evaluated on human cervical carcinoma HeLa cells by using human immortalized embryonic kidney 293 FT cells as a control. Viability assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) revealed that CuO NPs could selectively reduce viability of tumor cells (IC50 values 11.91ā€“25.78 Ī¼g/mL). Reactive oxygen species (ROS) production, cell membrane damage and apoptotic DNA laddering were also evident by nitroblue tetrazolium (NBT) reduction, lactate dehydrogenase (LDH) release assays and DNA electrophoresis, respectively. CuO NPs strongly inhibited lipoxygenase (LOX) enzymatic activity with IC50 values 4ā€“5.9 Ī¼g/mL, highlighting in that manner their anti-inflammatory activity

    Comparative study of corrosion performance of HVOF-sprayed coatings produced using conventional and suspension WC-Co feedstock.

    Get PDF
    Corrosion properties of nanostructured coatings deposited by suspension high-velocity oxy-fuel (S-HVOF) via an aqueous suspension of milled WC-Co powder were compared with conventional HVOF-sprayed coatings. Microstructural evaluations of these coatings included x-ray diffraction and scanning electron microscopy equipped with an energy-dispersive x-ray spectroscopy. The corrosion performance of AISI440C stainless steel substrate and the coatings was evaluated in a 3.5 wt.% NaCl aqueous solution at ~25 Ā°C. The electrochemical properties of the samples were assessed experimentally, employing potentiodynamic polarization and electrochemical impedance spectroscopy. The potentiodynamic polarization results indicated that coatings produced by S-HVOF technique show lower corrosion resistance compared with the coatings produced by HVOF-JK (HVOF Jet Kote) and HVOF-JP (HVOF JP5000) techniques. Results are discussed in terms of corrosion mechanism, Bode and Nyquist plots, as well as equivalent circuit models of the coatingā€“substrate system
    • ā€¦
    corecore