1,090 research outputs found
Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts
The fascinating story of olefin (or alkene) metathesis (eq
1) began almost five decades ago, when Anderson and
Merckling reported the first carbon-carbon double-bond
rearrangement reaction in the titanium-catalyzed polymerization of norbornene. Nine years later, Banks and Bailey reported “a new disproportionation reaction . . . in which olefins are converted to homologues of shorter and longer carbon chains...”. In 1967, Calderon and co-workers named this metal-catalyzed redistribution of carbon-carbon double bonds olefin metathesis, from the Greek word “μετάθεση”, which means change of position. These contributions have since served as the foundation for an amazing research field, and olefin metathesis currently represents a powerful transformation in chemical synthesis, attracting a vast amount of interest both in industry and academia
Ruthenium Olefin Metathesis Catalysts Bearing an N-Fluorophenyl-N-Mesityl-Substituted Unsymmetrical N-Heterocyclic Carbene
Two new ruthenium-based olefin metathesis catalysts, each bearing an unsymmetrical N-heterocyclic carbene ligand, have been synthesized and fully characterized. Their catalytic performance has been evaluated in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization reactions
Synthesis and Activity of Ruthenium Olefin Metathesis Catalysts Coordinated with Thiazol-2-ylidene Ligands
A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy_3)_2Cl_2Ru CHPh or (PCy_3)Cl_2Ru CH(o-iPrO−Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)- and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2-ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective
What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst?
Density function theory calculations reveal that the Grubbs-Hoveyda olefin metathesis pre-catalyst is activated by the formation of a complex in which the incoming alkene substrate and outgoing alkoxy ligand are both clearly associated with the ruthenium centre. The computed energies for reaction are in good agreement with the experimental values, reported here
Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece)
There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) concentrations in the fumarole atmospheric plumes were systematically above background levels (~4 ng GEM m-3), ranging from ~4.5 to 121 ng GEM m-3. Variability in the measured mercury concentrations may result from changes in atmospheric conditions and/or unsteady gas release from the fumaroles. We estimate an average GEM/CO2 mass ratio in the fumarolic gases of Nea Kameni of approximately 10-9, which falls in the range of values obtained at other low-T (100°C) volcanic/hydrothermal systems (~10-8); our measured GEM/H2S mass ratio (10-5) also lies within the accepted representative range (10-4 to 10-6) of non-explosive volcanic degassing. Our estimated mercury flux from Nea Kameni's fumarolic field (2.56 × 10-7 t yr-1), while making up a marginal contribution to the global volcanic non-eruptive GEM emissions from closed-conduit degassing volcanoes, represents the first available assessment of mercury emissions at Santorini volcano, and will contribute to the evaluation of future episodes of unrest at this renowned volcanic complex
Rapid emergency assessment of ash and gas hazard for future eruptions at Santorini Volcano, Greece
Hazard assessments for long-dormant volcanoes, where information is rarely available, typically have to be made rapidly and in the face of considerable uncertainty and often poor information. A conditional (assuming an eruption), scenario-based probabilistic approach to such an assessment is presented here for Santorini volcano (Greece). The rapid assessment was developed and implemented in response to the 2011-2012 unrest crisis in order to inform emergency management and planning. This paper synthesises the results presented to the Greek National Committee and scientific community involved. Two plausible eruptions at Santorini were investigated, using multiple inputs and dispersal models, based on observations of historic eruptions and expert judgement. For ash hazard, a 'most likely' eruption scenario was developed, characterised by slow lava extrusion over periods of one to two years with weak but persistent explosions and ash venting up to 3 km. A second 'largest considered' sub-Plinian explosive scenario assumed a 12 km high column of 4-h duration. For gas hazard, constant fluxes of 200 and 800 tons/day SO2 were assumed for the duration of the eruption scenarios, noting that there is very little evidence to constrain SO2 flux from Santorini eruptions. Statistical models of likely wind conditions with height and season were developed from decadal reanalysis time series showing that consistent low-altitude winds were rarely maintained for more than a few days. Stochastic models of ash (TEPHRA2, VOL-CALPUFF) and gas (AERMOD) dispersal provided outputs in the form of probability maps and exceedance probability curves for key loading and concentration thresholds at important locations on the island. The results from the rapid assessments presented in this paper confirm that ash and gas hazard is likely to be of concern if an eruption of Santorini occurs. Higher hazard may be expected to the south and east of the volcano, notably at important tourist and transport hubs. Low hazard to the north and northwest suggests that these may be suitable locations for emergency response centres and emergency critical infrastructure. This approach may provide a blueprint for rapid ash and gas assessment for other long-dormant volcanoes and we provide suggestions for refining the methods used.</p
On the properties of ITO, ZnO, ZnO:Al and NiO thin films obtained by thermal oxidation
Date du colloque : 10/2014International audienc
Designing organometallic compounds for catalysis and therapy
Bioorganometallic chemistry is a rapidly developing area of research. In recent years organometallic compounds have provided a rich platform for the design of effective catalysts, e.g. for olefin metathesis and transfer hydrogenation. Electronic and steric effects are used to control both the thermodynamics and kinetics of ligand substitution and redox reactions of metal ions, especially Ru II. Can similar features be incorporated into the design of targeted organometallic drugs? Such complexes offer potential for novel mechanisms of drug action through incorporation of outer-sphere recognition of targets and controlled activation features based on ligand substitution as well as metal- and ligand-based redox processes. We focus here on η 6-arene, η 5-cyclopentadienyl sandwich and half-sandwich complexes of Fe II, Ru II, Os II and Ir III with promising activity towards cancer, malaria, and other conditions. © 2012 The Royal Society of Chemistry
Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases
C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present
infrared and Raman spectra of these materials and show how the rotor-stator
nature is reflected in their vibrational properties. We measured the
vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8)
resulting from a solid state reaction occurring on heating. Based on the
spectra we propose a connection pattern for the fullerene in poly(C60C8H8),
where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal
with green or blue light a photochemical reaction was observed leading to a
similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd
version: minor changes in wording, accepted version by journa
Solid-state structure, solution-state behaviour and catalytic activity of electronically divergent C, N-chelating palladium-N-heterocyclic carbene complexes
A family of electronically diverse pyridyl- and picolyl-substituted imidazolium salts have been prepared and coordinated to palladium in a single step, to deliver a variety of palladium(II)–N-heterocyclic carbene (NHC) complexes. Neutral Pd(NHC)X2, cationic [Pd(NHC)2X]X and dicationic [Pd(NHC)2]X2-type complexes have been isolated and fully characterised, with single-crystal X-ray analysis revealing a variety of coordination environments around the palladium centres. The pre-formed complexes have been employed in a model Suzuki–Miyaura cross-coupling reaction to yield a sterically congested tetra-ortho-substituted biaryl product, showcasing turnover numbers comparable to Pd-PEPPSI-IPr catalyst
- …
