962 research outputs found

    Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts

    Get PDF
    The fascinating story of olefin (or alkene) metathesis (eq 1) began almost five decades ago, when Anderson and Merckling reported the first carbon-carbon double-bond rearrangement reaction in the titanium-catalyzed polymerization of norbornene. Nine years later, Banks and Bailey reported “a new disproportionation reaction . . . in which olefins are converted to homologues of shorter and longer carbon chains...”. In 1967, Calderon and co-workers named this metal-catalyzed redistribution of carbon-carbon double bonds olefin metathesis, from the Greek word “μετάθεση”, which means change of position. These contributions have since served as the foundation for an amazing research field, and olefin metathesis currently represents a powerful transformation in chemical synthesis, attracting a vast amount of interest both in industry and academia

    What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst?

    Get PDF
    Density function theory calculations reveal that the Grubbs-Hoveyda olefin metathesis pre-catalyst is activated by the formation of a complex in which the incoming alkene substrate and outgoing alkoxy ligand are both clearly associated with the ruthenium centre. The computed energies for reaction are in good agreement with the experimental values, reported here

    Ruthenium Olefin Metathesis Catalysts Bearing an N-Fluorophenyl-N-Mesityl-Substituted Unsymmetrical N-Heterocyclic Carbene

    Get PDF
    Two new ruthenium-based olefin metathesis catalysts, each bearing an unsymmetrical N-heterocyclic carbene ligand, have been synthesized and fully characterized. Their catalytic performance has been evaluated in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization reactions

    Synthesis and Activity of Ruthenium Olefin Metathesis Catalysts Coordinated with Thiazol-2-ylidene Ligands

    Get PDF
    A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy_3)_2Cl_2Ru CHPh or (PCy_3)Cl_2Ru CH(o-iPrO−Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)- and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2-ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective

    Volcanism of the South Aegean Volcanic Arc

    Get PDF
    Volcanism along the South Aegean Volcanic Arc began about 4.7 Ma and has lasted until the present day, with eruptions at Methana, Milos, Santorini, Kolumbo and Nisyros Volcanoes in historical times. These volcanoes can be grouped into five volcanic fields: three western fields of small, mostly monogenetic edifices, and two central/eastern fields with composite cones and calderas that have produced large explosive eruptions. Crustal tectonics exerts a strong control over the locations of edifices and vents at all five volcanic fields. Tephra and cryptotephra layers in deep-marine sediments preserve a continuous record of arc volcanism in the Aegean as far back as 200,000 years. Hazards from the volcanoes include high ash plumes, pyroclastic flows and tsunamis. Monitoring networks should be improved and expanded

    Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece)

    Get PDF
    There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) concentrations in the fumarole atmospheric plumes were systematically above background levels (~4 ng GEM m-3), ranging from ~4.5 to 121 ng GEM m-3. Variability in the measured mercury concentrations may result from changes in atmospheric conditions and/or unsteady gas release from the fumaroles. We estimate an average GEM/CO2 mass ratio in the fumarolic gases of Nea Kameni of approximately 10-9, which falls in the range of values obtained at other low-T (100°C) volcanic/hydrothermal systems (~10-8); our measured GEM/H2S mass ratio (10-5) also lies within the accepted representative range (10-4 to 10-6) of non-explosive volcanic degassing. Our estimated mercury flux from Nea Kameni's fumarolic field (2.56 × 10-7 t yr-1), while making up a marginal contribution to the global volcanic non-eruptive GEM emissions from closed-conduit degassing volcanoes, represents the first available assessment of mercury emissions at Santorini volcano, and will contribute to the evaluation of future episodes of unrest at this renowned volcanic complex

    Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones

    Get PDF
    A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]hydride transfer during the transformation of the intermediate propargylamine to the final allene.The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the procurement of high-cost research equipment grant" (Project Number: 16.Acronym: SUSTAIN). We thank Professor Thomas Mavromoustakos for his advice and support concerning the calculation of the relaxation delay times for the NMR analysis related to the kinetic isotope effect measurements. We also acknowledge the contribution of COST Action CA15106 (C-H Activation in Organic Synthesis.CHAOS). We also thank the Spanish Ministerio de Ciencia e Innovacion (PID2019-110008GB-I00) and IZO-SGI SGIker of UPV/EHU for financial and human support. The Special Account for Research Grants of the National and Kapodistrian University of Athens is also gratefully acknowledged for funding (research program 70/4/17454)

    VOLCANIC HAZARD ASSESSMENT AT SANTORINI VOLCANO: A REVIEW AND A SYNTHESIS IN THE LIGHT OF THE 2011-2012 SANTORINI UNREST

    Get PDF
    Το 2011 και το πρώτο εξάμηνο του 2012 η Σαντορίνη γνώρισε την πρώτη σεισμο-ηφαιστειακή κρίση από το 1950, όπως αυτή ανιχνεύθηκε από τα μόνιμα εγκατεστημένα δίκτυα παρακολούθησης και ένα μεγάλο αριθμό παροδικών μετρήσεων. Η διέγερση αυτή χαρακτηρίστηκε από μικρού μεγέθους, αλλά έντονη σεισμική δραστηριότητα, σημαντική ανύψωση και διόγκωση του νησιού, αλλαγές της θερμοκρασίας του νερού και των γεωχημικών αερίων. Ενώ η διέγερση έληξε την άνοιξη του 2012, το παγκόσμιο ενδιαφέρον οδήγησε στην εκπόνηση αρκετών μελετών, σε μια προσπάθεια να αξιολογηθούν τα πιθανά σενάρια για την εξέλιξη της διέγερσης. Στο πλαίσιο αυτό, συνοψίζουμε τα σημαντικότερα ευρήματα σχετικά με την επικινδυνότητα του ευρύτερου ηφαιστειακού συγκροτήματος της Σαντορίνης, καθώς και τις πληροφορίες που πρέπει να ληφθούν υπόψη για τη διαχείριση μιας πιθανής μελλοντικής ηφαιστειακής κρίσης.In 2011 and the first half of 2012 Santorini experienced its first seismo-volcanic unrest since 1950, as detected by the permanently installed monitoring networks and a large number of campaign measurements. The unrest was characterized by small magnitude but intense seismic activity, significant uplift and inflation deformation rates, and changes of water temperature as well as of fluid and soil gases. While the unrest ended in the spring of 2012, the world-wide interest led to the performance of several studies, in an attempt to assess the possible scenarios for the unrest evolution. Within this framework, we summarize the most important findings regarding the volcanic hazard assessment of the broader Santorini volcanic complex, as well as the constraints that need to be taken into account for a possible future volcanic crisis management

    Unprecedented Multicomponent Organocatalytic Synthesis of Propargylic Esters via CO2 Activation

    Get PDF
    An efficient and straightforward organocatalytic method for the direct, multicomponent carboxylation of terminal alkynes with CO2 and organochlorides, towards propargylic esters, is reported for the first time. 1,3-Di-tert-butyl-1H-imidazol-3-ium chloride, a simple, widely-available, stable, and cost-efficient Nheterocyclic carbene (NHC) precursor salt was used as the (pre) catalyst. A wide range of phenylacetylenes, bearing electronwithdrawing or electron-donating substituents, react with allylchlorides, benzyl chlorides, or 2-chloroacetates, providing the corresponding propargylic esters in low to excellent yields. DFT calculations on the mechanism of this transformation indicate that the reaction is initiated with the formation of an NHCcarboxylate, by addition of the carbene to a molecule of CO2. Then, the nucleophilic addition of this species to the corresponding chlorides has been computed to be the rate limiting step of the processWe acknowledge the contribution of COST Action CA15106 (C−H Activation in Organic Synthesis-CHAOS). The Special Account for Research Grants of the National and Kapodistrian University of Athens is also gratefully acknowledged for funding (Research Program 70/3/14872). Moreover, we are thankful for the technical and human support provided by IZO-SGI SGIker of UPV/EHU, and the European Funding Horizon 2020-MSCA (ITN-EJD CATMEC 14/06-721223
    corecore