Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones

Abstract

A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]hydride transfer during the transformation of the intermediate propargylamine to the final allene.The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the procurement of high-cost research equipment grant" (Project Number: 16.Acronym: SUSTAIN). We thank Professor Thomas Mavromoustakos for his advice and support concerning the calculation of the relaxation delay times for the NMR analysis related to the kinetic isotope effect measurements. We also acknowledge the contribution of COST Action CA15106 (C-H Activation in Organic Synthesis.CHAOS). We also thank the Spanish Ministerio de Ciencia e Innovacion (PID2019-110008GB-I00) and IZO-SGI SGIker of UPV/EHU for financial and human support. The Special Account for Research Grants of the National and Kapodistrian University of Athens is also gratefully acknowledged for funding (research program 70/4/17454)

    Similar works