161 research outputs found

    Disseminated Toxoplasmosis in a Patient with Non-Hodgkin Lymphoma

    Get PDF
    Abstract : Toxoplasmosis is a well-recognized opportunistic disease in HIV-infected individuals that is caused by the reactivation of a previous infection, primarily in the central nervous system, during profound immunodeficiency. Toxoplasmosis has been described more rarely in patients with cancer and chemotherapy. We report a case of a patient with a history of chemotherapy for non-Hodgkin lymphoma who developed pain and progressive paresthesia of the right arm 6 weeks after remission. Relapsing lymphoma was suspected, and steroid and radiation treatment were initiated, but the patient died 5 days later due to multiple organ failure. Autopsy revealed disseminated toxoplasmosis. This case illustrates that toxoplasmosis should be suspected in patients with neoplastic disease, especially lymphomas, who present with unexplained neurologic, pulmonary, or febrile symptoms during or after chemotherap

    Global and regional development of the human cerebral cortex:Molecular architecture and occupational aptitudes

    Get PDF
    We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade—albeit in a very limited manner—to behaviors as complex as the choice of one’s occupation

    Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the β-Myosin Heavy Chain Gene

    Get PDF
    Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and β-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium

    Mutations in HID1 Cause Syndromic Infantile Encephalopathy and Hypopituitarism.

    Get PDF
    OBJECTIVE: Precursors of peptide hormones undergo posttranslational modifications within the trans-Golgi network (TGN). Dysfunction of proteins involved at different steps of this process cause several complex syndromes affecting the central nervous system (CNS). We aimed to clarify the genetic cause in a group of patients characterized by hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy. METHODS: Whole exome sequencing was performed in seven individuals of six unrelated families with these features. Postmortem histopathological and HID1 expression analysis of brain tissue and pituitary gland were conducted in one patient. Functional consequences of the homozygous HID1 variant p.R433W were investigated by Seahorse XF Assay in fibroblasts of two patients. RESULTS: Bi-allelic variants in the gene HID1 domain-containing protein 1 (HID1) were identified in all patients. Postmortem examination confirmed cerebral atrophy with enlarged lateral ventricles. Markedly reduced expression of pituitary hormones was found in pituitary gland tissue. Colocalization of HID1 protein with the TGN was not altered in fibroblasts of patients compared to controls, while the extracellular acidification rate upon stimulation with potassium chloride was significantly reduced in patient fibroblasts compared to controls. INTERPRETATION: Our findings indicate that mutations in HID1 cause an early infantile encephalopathy with hypopituitarism as the leading presentation, and expand the list of syndromic CNS diseases caused by interference of TGN function. ANN NEUROL 2021

    Relaxation of supercoiled phosphorothioate DNA by mammalian topoisomerases is inhibited in a base-specific manner

    No full text
    The nucleotide preferences of calf thymus topoisomerases I and II for recognition of supercoiled DNA have been assessed by the relaxation and cleavage of DNA containing base-specific phosphorothioate substitutions in one strand. The type I enzyme is inhibited to varying degrees by all modified DNAs, but most effectively (by approximately 60%) if deoxyguanosine 5'-O-(1-thiomonophosphate) (dGMP alpha S) is incorporated into negatively supercoiled DNA. A DNA in which all internucleotide linkages of one strand are phosphorothionate is relaxed, most probably via the unsubstituted strand. The type II enzyme is inhibited when deoxyadenosine 5'-O-(1-thiomonophosphate) (dAMP alpha S) or deoxyribosylthymine 5'-O-(1-thiomonophosphate) is incorporated into the DNA substrate, and the course of the relaxation reaction changes from a distributive mode to a predominantly processive mode. A fully substituted DNA is very poorly relaxed by the type II enzyme, illustrating the strict commitment of the enzyme to relaxation via double-strand cleavage. The sense of supercoiling does not affect the inhibition profile of either enzyme. DNA strand breaks introduced by type II topoisomerase in a normal control DNA or deoxycytidine 5'-O-(1-thiomonophosphate)-substituted DNA on treatment with sodium dodecyl sulfate at low ionic strength are prevented by pretreatment with 0.2 M NaCl. In contrast, breaks in DNA having either dAMP alpha S or all four phosphorothioate nucleotides incorporated in one strand are prevented only with higher NaCl concentrations. Thus indicating activity at the phosphorothioate linkage 5' to dA but not 5' to dC. We conclude that topoisomerase II activity occurs preferentially at sites possessing dAMP or dTMP, and that dGMP is involved in DNA recognition by topoisomerase I

    Inhibition of calf thymus type II DNA topoisomerase by poly(ADP‐ribosylation)

    No full text
    The effect of poly(ADP-ribosylation) on calf thymus topoisomerase type II reactions has been investigated. Unknotting of phage P4 head DNA, and relaxation and catenation of supercoiled PM2 DNA are inhibited. We conclude that the inhibition results from poly(ADP-ribosylation) on the following grounds. Firstly, the enzyme poly(ADP-ribose) (PADPR) synthetase and NAD are required, secondly, the competitive synthetase inhibitor nicotinamide abolishes topoisomerase inhibition, and thirdly, the polymer alone is not inhibitory. The mechanism of inhibition appears to be disruption of the strand cleavage reaction. A topoisomerase-DNA complex can be formed that upon treatment with protein denaturant at low ionic strength results in strand cleavage. The amount of DNA present in such a cleavable-complex progressively decreased following pretreatment of topoisomerase type II with PADPR synthetase and increasing concentrations of NAD. Treatment of the pre-formed complex with NAD and PADPR synthetase had no effect on its salt-induced dissociation. This suggests that either poly(ADP-ribosylation) has no influence on dissociation of topoisomerase, in contrast to association, or topoisomerase is not accessible to the synthetase when bound to DNA. Similar data were obtained with calf thymus type I topoisomerase

    Functional diversity of single stem cell clones in patients&#39; acute lymphoblastic leukemia growing in mice: An adverse subclone with distinct DNA-methylation pattern, slow growth<em> in vivo </em>and drug resistance.

    No full text
    Acute lymphoblastic leukemia (ALL) consists of genetically heterogeneous cell subpopulations, but little is known about how genetic differences lead to functional differences between the clones. Of major clinical importance, aggressive, treatment-resistant and putatively relapse-inducing subclones need to be identified and require effective eradication by treatment. The most aggressive subpopulation likely determines prognosis and outcome in each patient. We aimed at characterizing on a functional as well as on a genetic level single stem cell clones derived from patients&#39; samples growing in mice and to combine the results of both levels in order to learn which genetic characteristics are associated with adverse functional behavior. We transplanted primary tumor cells from a 5-year old girl with hyperdiploid ALL involving a trisomic X chromosome at first relapse into severely immune-compromised mice and lentivirally modified them to express the fluorochromes red, blue and green at different amounts and combinations (RGB marking, Weber et al., 2012). Eight single stem cell clones were generated by limiting dilution transplantation and their uniqueness was verified by ligation-mediated (LM) PCR. We functionally compared the single stem cell clones between each other by re-mixing them in a single mouse for in vivo assays; analysis was performed one-by-one for each clone by flow cytometry where they could be distinguished from each other using their unique color codes. Clones showed clear differences in proliferation rate with faster and slower growing clones, independently whether 2 or 5 clones were mixed. When mice harboring clone mixtures were treated with conventional chemotherapy, clonal composition changed markedly and resistant clones overgrew sensitive clones indicating selective clonal responses and clonal advantage. A clone which showed especially slow growth in vivo was most resistant to in vivo treatment with Glucocorticoids. The slowly proliferating, Glucocorticoid-resistant clone had lost the additional X chromosome, which was present in all other clones and the bulk and showed a distinct DNA-methylation pattern analyzed by 450K arrays (illumina). In exome analysis, the clone showed 11 unique alterations including a single nucleotide variant in the oncogene USP6. We are currently performing RNA sequencing analysis to assess the differential gene expression in the clones. Taken together, genetic multicolor marking PDX ALL cells in the individualized xenograft mouse model allowed generating viable single cell clones for genetic functional characterization in vivo. Within the heterogeneous tumor bulk, an subclone existed which showed slow tumor growth and drug resistance which was associated with distinct genetic characteristics. Our studies allow the challenging functional characterization of subclones in vivo in order to develop efficient novel treatment approaches to eliminate aggressive stem cell clones in ALL
    corecore