11 research outputs found

    Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait

    Get PDF
    Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C4 and non-C4 genotypes, with some populations using laterally-acquired C4 -adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C4 and non-C4 A. semialata individuals spanning the species' range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally-acquired genes for key C4 functions were rapidly passed between populations with otherwise distinct gene pools. Thus, our intraspecific study of C4 -related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations. This article is protected by copyright. All rights reserved

    The recent and rapid spread of Themeda triandra

    Get PDF
    Tropical savannas cover over 20% of land surface. They sustain a high diversity of mammalian herbivores and promote frequent fires, both of which are dependent on the underlying grass composition. These habitats are typically dominated by relatively few taxa, and the evolutionary origins of the dominant grass species are largely unknown. Here, we trace the origins of the genus Themeda, which contains a number of widespread grass species dominating tropical savannas. Complete chloroplast genomes were assembled for seven samples and supplemented with chloroplast and nuclear ITS markers for 71 samples representing 18 of the 27 Themeda species. Phylogenetic analysis supports a South Asian origin for both the genus and the widespread dominant T. triandra. This species emerged ~1.5 Ma from a group that had lived in the savannas of Asia for several million years. It migrated to Australia ~1.3 Ma and to mainland Africa ~0.5 Ma, where it rapidly spread in pre-existing savannas and displaced other species. Themeda quadrivalvis, the second most widespread Themeda species, is nested within T. triandra based on whole chloroplast genomes, and may represent a recent evolution of an annual growth form that is otherwise almost indistinguishable from T. triandra. The recent spread and modern-day dominance of T. triandra highlight the dynamism of tropical grassy biomes over millennial time-scales that has not been appreciated, with dramatic shifts in species dominance in recent evolutionary times. The ensuing species replacements likely had profound effects on fire and herbivore regimes across tropical savannas

    Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species

    Get PDF
    C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin

    A global database of C4 photosynthesis in grasses

    Get PDF
    C3,C4 or Crassulacean acid metabolism (CAM) photosynthetic pathways represent a fundamental axis of trait variation in plants,with importance at scales from genome to biome. Knowing the distribution of these pathways among wild species is a crucial first step in understanding the patterns and processes of photosynthetic evolution and its role in ecological processes at large scales (e.g. changes in the composition of biomes under global change). C4 photosynthesis is most prevalent in the Poaceae (grasses), which account for about half of all C4 species (Sage et al.,1999a).Research on the evolution and ecology of these plants has undergone a renaissance during the last 7 yr, catalyzed by phylogenetic analyses showing multiple parallel C4 origins (e.g. Christin et al. , 2007; Vicentini et al., 2008; GPWG II, 2012), insights into the distribution of C4 species and assembly of the C4 grassland biome (Edwards & Still, 2008; Edwards & Smith, 2010; Edwards et al., 2010), and efforts to introduce the C4 pathway into rice (Hibberd et al., 2008; von Caemmerer et al., 2012). C4 photosynthesis is an excellent model for investigating complex trait evolution, because of the broad knowledge base describing its biochemical basis, evolutionary history, and ecological interactions (Christin et al., 2010)

    Continued adaptation of C4 photosynthesis after an initial burst of changes in the andropogoneae grasses

    Get PDF
    C4 photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and subtropical conditions and evolved repeatedly in flowering plants. One of the major C4 lineages is Andropogoneae, a group of ∼ 1,200 grass species that includes some of the world's most important crops and species dominating tropical and some temperate grasslands. Previous efforts to understand C4 evolution in the group have compared a few model C4 plants to distantly related C3 species, so that changes directly responsible for the transition to C4 could not be distinguished from those that preceded or followed it. In this study, we analyse the genomes of 66 grass species, capturing the earliest diversification within Andropogoneae as well as their C3 relatives. Phylogenomics combined with molecular dating and analyses of protein evolution show that many changes linked to the evolution of C4 photosynthesis in Andropogoneae happened in the Early Miocene, between 21 and 18 Ma, after the split from its C3 sister lineage, and before the diversification of the group. This initial burst of changes was followed by an extended period of modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so that a single C4 origin gave birth to a diversity of C4 phenotypes during 18 million years of speciation events and migration across geographic and ecological spaces. Our comprehensive approach and broad sampling of the diversity in the group reveals that one key transition can lead to a plethora of phenotypes following sustained adaptation of the ancestral state

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade

    Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species:Intraspecific dispersal of C4 physiology

    No full text
    C 4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C 4 and non-C 4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C 4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C 4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C 4 physiology away from its region of origin

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
    corecore