1,067 research outputs found
Loop Variables for a Class of Conical Spacetimes
Loop variables are used to describe the presence of topological defects in
spacetime. In particular we study the dependence of the holonomy transformation
on angular momentum and torsion for a multi-chiral cone. We also compute the
holonomies for multiple moving crossed cosmic strings and two plane topological
defects-crossed by a cosmic string.Comment: 17 pages, LATE
Dirac equation in the magnetic-solenoid field
We consider the Dirac equation in the magnetic-solenoid field (the field of a
solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm
solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using
von Neumann's theory of deficiency indices. We find self-adjoint extensions of
the Dirac Hamiltonian in both above dimensions and boundary conditions at the
AB solenoid. Besides, for the first time, solutions of the Dirac equation in
the magnetic-solenoid field with a finite radius solenoid were found. We study
the structure of these solutions and their dependence on the behavior of the
magnetic field inside the solenoid. Then we exploit the latter solutions to
specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm
solenoid.Comment: 23 pages, 2 figures, LaTex fil
Quantum properties of general gauge theories with composite and external fields
The generating functionals of Green's functions with composite and external
fields are considered in the framework of BV and BLT quantization methods for
general gauge theories. The corresponding Ward identities are derived and the
gauge dependence is investigatedComment: 24 pages, LATEX, slightly changed to clarify the essential new aspect
concerning composite fields depending on external ones; added formulas
showing lack of (generalized) nilpotence of operators appearing in the Ward
identitie
Structure and Properties of Graphite-Molybdenum Brazed Joints
The paper presents the results of X-ray microspectral studies of dissimilar brazed joints of molybdenum with graphite. It is shown that during active brazing of graphite with molybdenum, mutual diffusion processes occur, and the adhesion-active brazing filler metals penetrates into graphite, and interacts with it, which leads to the formation of carbide phases. When using the Ti-Cr-V and Cu-Ti-Ni systems brazing filler metals, titanium carbides are formed. The zirconium carbides are formed, when using the brazing filler metals based on the Zr-Pd(Mo) systems and the CxMey(Mo, Cr) carbides are formed using the brazing filler metals of the Pd-Ni-Cr-Ge system. The results of tests for three-point bending showed that the using of Pd-Ni-Cr-Ge brazing filler metals provides stable strength at the level of 34-37 MPa, destruction occurs along graphite
Acoustic emission and methods of its registration (review)
Lately a tendency is observed for the steady growth of requirements applied both to construction materials as well as to the methods of estimation of their reliability and quality. Particular attention is paid to the development of new, physically reasonable criteria of structural durability of materials, based on comprehensive study of the phenomena, which form the basis of processes of deformation and fracture. Such approach is supposed to enhance our understanding of the nature of durability and mechanisms of fracture of materials on different scale levels. This is possible only when analysis of these phenomena is accomplished by means of modern physical research methods as well as applying acoustic emission techniques for diagnostics of the fractures
Higher Derivative Quantum Gravity with Gauss-Bonnet Term
Higher derivative theory is one of the important models of quantum gravity,
renormalizable and asymptotically free within the standard perturbative
approach. We consider the renormalization group for this theory,
an approach which proved fruitful in models. A consistent
formulation in dimension requires taking quantum effects of the
topological term into account, hence we perform calculation which is more
general than the ones done before. In the special case we confirm a known
result by Fradkin-Tseytlin and Avramidi-Barvinsky, while contributions from
topological term do cancel. In the more general case of
renormalization group equations there is an extensive ambiguity related to
gauge-fixing dependence. As a result, physical interpretation of these
equations is not universal unlike we treat as a small parameter. In
the sector of essential couplings one can find a number of new fixed points,
some of them have no analogs in the case.Comment: LaTeX file, 30 pages, 5 figures. Several misprints in the
intermediate expressions correcte
The Path Integral Quantization And The Construction Of The S-matrix In The Abelian And Non-Abelian Chern-Simons Theories
The cvariant path integral quantization of the theory of the scalar and
spinor particles interacting through the abelian and non-Abelian Chern-Simons
gauge fields is carried out and is shown to be mathematically ill defined due
to the absence of the transverse components of these gauge fields. This is
remedied by the introduction of the Maxwell or the Maxwell-type (in the
non-Abelian case)term which makes the theory superrenormalizable and guarantees
its gauge-invariant regularization and renormalization. The generating
functionals are constructed and shown to be formally the same as those of QED
(or QCD) in 2+1 dimensions with the substitution of the Chern-Simons propagator
for the photon (gluon) propagator. By constructing the propagator in the
general case, the existence of two limits; pure Chern-Simons and QED (QCD)
after renormalization is demonstrated.
By carrying out carefully the path integral quantization of the non-Abelian
Chern-Simons theories using the De Witt-Fadeev-Popov and the Batalin-Fradkin-
Vilkovisky methods it is demonstrated that there is no need to quantize the
dimensionless charge of the theory. The main reason is that the action in the
exponent of the path integral is BRST-invariant which acquires a zero winding
number and guarantees the BRST renormalizability of the model.
The S-matrix operator is constructed, and starting from this S-matrix
operator novel topological unitarity identities are derived that demand the
vanishing of the gauge-invariant sum of the imaginary parts of the Feynman
diagrams with a given number of intermediate on-shell topological photon lines
in each order of perturbation theory. These identities are illustrated by an
explicit example.Comment: LaTex file, 31 pages, two figure
Coherent states of non-relativistic electron in magnetic-solenoid field
We construct coherent states of a nonrelativistic electron in the
magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field
and a collinear uniform magnetic field. In the problem under consideration
there are two kind of coherent states, the first kind corresponds to classical
trajectories which embrace the solenoid and the second one to trajectories
which do not. Mean coordinates in the constructed coherent states are moving
along classical trajectories, the coherent states maintain their form under the
time evolution, and represent a complete set of functions, which can be useful
in semi classical calculations. In the absence of the Aharonov-Bohm filed these
states are reduced to the well-known in the case of uniform magnetic field
Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures
adde
Effectiveness research of the new learning elements, initiated by the change to competency-based education model in Russia
Within the article the main principles for developing competency-based education, the principles for identifying competencies and the list of competencies that must be developed in a learner according to competency-based model, are analyzed. The new learning elements, initiated by the change to the competency-based education model in Russian Federation and by the new demands of Ministry of Education and Science of Russian Federation, have been included. The new learning elements have been analyzed for the compliance with the considered principles of developing competencies. The competencies, which are developed by each particular learning element, have been identified. The results of an experiment on developing competencies in two groups of students - taught with the use of new learning elements, and taught by traditional means, have been considered. (C) 2015 The Authors. Published by Elsevier Ltd
- …