37 research outputs found

    Age-Sex differences in the global burden of lower respiinfections and risk factors, 1990-2019 : results from the Global Burden of Disease Study 2019

    Get PDF
    Background The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across a groups by sex, for 204 countries and territories.Methods In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used dinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466-469, 470.0, 480-482.8, 483.0-483.9, 484.1-484.2, 484.6-484.7, and 487-489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4 B97.6, 109-115.8, J16 J16.9, J20-121.9, J91.0, P23.0 P23.4, and U04 U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23109 site-years of vital r *stration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian metaregression tool, to analyse age sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and daims and inpatient data. Additio y, we estimated age sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors.Findings Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240-275) LRI incident episodes in males and 232 million (217-248) in females. In the same year, LRIs accounted for 1.30 million (95% UI 1.18-1.42) male deaths and 1.20 million (1.07-1.33) female deaths. Age-standardised incidence and mortality rates were 1.17 times (95% UI 1.16-1.18) and 1.31 times (95% UI 1.23-1.41) greater in males than in fe es in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126.0% [95% UI 121.4-131.1]) and deaths (100.0% [83.4-115.9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest dedine was observed for LRI deaths in males younger than 5 years (-70.7% [-77.2 to 61.8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53.0% [95% UI 37.7-61.8] in males and 56.4% [40.7-65.1] in females), and more than a quarter of LRI deaths among those aged 5-14 years were attributable to household air pollution (PAF 26.0% [95% UI 16.6-35.5] for males and PAF 25.8% [16.3-35.4] for females). PAFs of male LRI deaths attributed to smoking were 20.4% (95% UI 15.4-25.2) in those aged 15-49 years, 305% (24.1-36. 9) in those aged 50-69 years, and 21.9% (16. 8-27. 3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21.1% (95% UI 14.5-27.9) in those aged 15-49 years and 18 " 2% (12.5-24.5) in those aged 50-69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11-7% (95% UI 8.2-15.8) of LRI deaths.Interpretation The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children you - than 5 years was dearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, induding promoting wellbeing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities.Copyright 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global, Regional, and National Sex Differences in the Global Burden of Tuberculosis by HIV Status, 1990-2019: Results From the Global Burden of Disease Study 2019

    Get PDF
    Background Tuberculosis is a major contributor to the global burden of disease, causing more than a million deaths annually. Given an emphasis on equity in access to diagnosis and treatment of tuberculosis in global health targets, evaluations of differences in tuberculosis burden by sex are crucial. We aimed to assess the levels and trends of the global burden of tuberculosis, with an emphasis on investigating differences in sex by HIV status for 204 countries and territories from 1990 to 2019. Methods We used a Bayesian hierarchical Cause of Death Ensemble model (CODEm) platform to analyse 21505 siteyears of vital registration data, 705 site-years of verbal autopsy data, 825 site-years of sample-based vital registration data, and 680 site-years of mortality surveillance data to estimate mortality due to tuberculosis among HIV-negative individuals. We used a population attributable fraction approach to estimate mortality related to HIV and tuberculosis coinfection. A compartmental meta-regression tool (DisMod-MR 2.1) was then used to synthesise all available data sources, including prevalence surveys, annual case notifications, population-based tuberculin surveys, and tuberculosis cause-specific mortality, to produce estimates of incidence, prevalence, and mortality that were internally consistent. We further estimated the fraction of tuberculosis mortality that is attributable to independent effects of risk factors, including smoking, alcohol use, and diabetes, for HIV-negative individuals. For individuals with HIV and tuberculosis coinfection, we assessed mortality attributable to HIV risk factors including unsafe sex, intimate partner violence (only estimated among females), and injection drug use. We present 95% uncertainty intervals for all estimates. Findings Globally, in 2019, among HIV-negative individuals, there were 1·18 million (95% uncertainty interval 1·08–1·29) deaths due to tuberculosis and 8·50 million (7·45–9·73) incident cases of tuberculosis. Among HIV-positive individuals, there were 217000 (153000–279 000) deaths due to tuberculosis and 1·15 million (1·01–1·32) incident cases in 2019. More deaths and incident cases occurred in males than in females among HIV-negative individuals globally in 2019, with 342 000 (234 000–425000) more deaths and 1·01 million (0·82–1·23) more incident cases in males than in females. Among HIV-positive individuals, 6250 (1820–11400) more deaths and 81 100 (63300–100000) more incident cases occurred among females than among males in 2019. Age-standardised mortality rates among HIV-negative males were more than two times greater in 105 countries and age-standardised incidence rates were more than 1·5 times greater in 74 countries than among HIV-negative females in 2019. The fraction of global tuberculosis deaths among HIV-negative individuals attributable to alcohol use, smoking, and diabetes was 4·27 (3·69–5·02), 6·17 (5·48–7·02), and 1·17 (1·07–1·28) times higher, respectively, among males than among females in 2019. Among individuals with HIV and tuberculosis coinfection, the fraction of mortality attributable to injection drug use was 2·23 (2·03–2·44) times greater among males than females, whereas the fraction due to unsafe sex was 1·06 (1·05–1·08) times greater among females than males. Interpretation As countries refine national tuberculosis programmes and strategies to end the tuberculosis epidemic, the excess burden experienced by males is important. Interventions are needed to actively communicate, especially to men, the importance of early diagnosis and treatment. These interventions should occur in parallel with efforts to minimise excess HIV burden among women in the highest HIV burden countries that are contributing to excess HIV and tuberculosis coinfection burden for females. Placing a focus on tuberculosis burden among HIV-negative males and HIV and tuberculosis coinfection among females might help to diminish the overall burden of tuberculosis. This strategy will be crucial in reaching both equity and burden targets outlined by global health milestones

    Global, regional, and national burden of meningitis and its aetiologies, 1990 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Background Although meningitis is largely preventable, it still causes hundreds of thousands of deaths globally each year. WHO set ambitious goals to reduce meningitis cases by 2030, and assessing trends in the global meningitis burden can help track progress and identify gaps in achieving these goals. Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we aimed to assess incident cases and deaths due to acute infectious meningitis by aetiology and age from 1990 to 2019, for 204 countries and territories. Methods We modelled meningitis mortality using vital registration, verbal autopsy, sample-based vital registration, and mortality surveillance data. Meningitis morbidity was modelled with a Bayesian compartmental model, using data from the published literature identified by a systematic review, as well as surveillance data, inpatient hospital admissions, health insurance claims, and cause-specific meningitis mortality estimates. For aetiology estimation, data from multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature studies were analysed by use of a network analysis model to estimate the proportion of meningitis deaths and cases attributable to the following aetiologies: Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococcus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Staphylococcus aureus, viruses, and a residual other pathogen category. Findings In 2019, there were an estimated 236 000 deaths (95% uncertainty interval [UI] 204 000–277 000) and 2·51 million (2·11–2·99) incident cases due to meningitis globally. The burden was greatest in children younger than 5 years, with 112 000 deaths (87 400–145 000) and 1·28 million incident cases (0·947–1·71) in 2019. Age-standardised mortality rates decreased from 7·5 (6·6–8·4) per 100 000 population in 1990 to 3·3 (2·8–3·9) per 100 000 population in 2019. The highest proportion of total all-age meningitis deaths in 2019 was attributable to S pneumoniae (18·1% [17·1–19·2]), followed by N meningitidis (13·6% [12·7–14·4]) and K pneumoniae (12·2% [10·2–14·3]). Between 1990 and 2019, H influenzae showed the largest reduction in the number of deaths among children younger than 5 years (76·5% [69·5–81·8]), followed by N meningitidis (72·3% [64·4–78·5]) and viruses (58·2% [47·1–67·3]). Interpretation Substantial progress has been made in reducing meningitis mortality over the past three decades. However, more meningitis-related deaths might be prevented by quickly scaling up immunisation and expanding access to health services. Further reduction in the global meningitis burden should be possible through low-cost multivalent vaccines, increased access to accurate and rapid diagnostic assays, enhanced surveillance, and early treatment.Bill & Melinda Gates Foundationinfo:eu-repo/semantics/publishedVersio

    Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: results from the Global Burden of Disease Study 2019

    Get PDF
    Summary Background The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories. Methods In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466–469, 470.0, 480–482.8, 483.0–483.9, 484.1–484.2, 484.6–484.7, and 487–489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4–B97.6, J09–J15.8, J16–J16.9, J20–J21.9, J91.0, P23.0–P23.4, and U04–U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23 109 site-years of vital registration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian meta-regression tool, to analyse age–sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and claims and inpatient data. Additionally, we estimated age–sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors. Findings Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240–275) LRI incident episodes in males and 232 million (217–248) in females. In the same year, LRIs accounted for 1·30 million (95% UI 1·18–1·42) male deaths and 1·20 million (1·07–1·33) female deaths. Age-standardised incidence and mortality rates were 1·17 times (95% UI 1·16–1·18) and 1·31 times (95% UI 1·23–1·41) greater in males than in females in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126·0% [95% UI 121·4–131·1]) and deaths (100·0% [83·4–115·9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest decline was observed for LRI deaths in males younger than 5 years (–70·7% [–77·2 to –61·8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53·0% [95% UI 37·7–61·8] in males and 56·4% [40·7–65·1] in females), and more than a quarter of LRI deaths among those aged 5–14 years were attributable to household air pollution (PAF 26·0% [95% UI 16·6–35·5] for males and PAF 25·8% [16·3–35·4] for females). PAFs of male LRI deaths attributed to smoking were 20·4% (95% UI 15·4–25·2) in those aged 15–49 years, 30·5% (24·1–36·9) in those aged 50–69 years, and 21·9% (16·8–27·3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21·1% (95% UI 14·5–27·9) in those aged 15–49 years and 18·2% (12·5–24·5) in those aged 50–69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11·7% (95% UI 8·2–15·8) of LRI deaths. Interpretation The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children younger than 5 years was clearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, including promoting wellbeing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities. Funding Bill & Melinda Gates Foundation.Bill & Melinda Gates Foundation.publishedVersio

    Global, regional, and national sex differences in the global burden of tuberculosis by HIV status, 1990–2019: results from the Global Burden of Disease Study 2019

    Get PDF
    Tuberculosis is a major contributor to the global burden of disease, causing more than a million deaths annually. Given an emphasis on equity in access to diagnosis and treatment of tuberculosis in global health targets, evaluations of differences in tuberculosis burden by sex are crucial. We aimed to assess the levels and trends of the global burden of tuberculosis, with an emphasis on investigating differences in sex by HIV status for 204 countries and territories from 1990 to 2019.publishedVersio

    Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019 : results from the Global Burden of Disease Study 2019

    Get PDF
    Background: The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories. Methods: In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466–469, 470.0, 480–482.8, 483.0–483.9, 484.1–484.2, 484.6–484.7, and 487–489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4–B97.6, J09–J15.8, J16–J16.9, J20–J21.9, J91.0, P23.0–P23.4, and U04–U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23 109 site-years of vital registration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian meta-regression tool, to analyse age–sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and claims and inpatient data. Additionally, we estimated age–sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors. Findings: Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240–275) LRI incident episodes in males and 232 million (217–248) in females. In the same year, LRIs accounted for 1·30 million (95% UI 1·18–1·42) male deaths and 1·20 million (1·07–1·33) female deaths. Age-standardised incidence and mortality rates were 1·17 times (95% UI 1·16–1·18) and 1·31 times (95% UI 1·23–1·41) greater in males than in females in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126·0% [95% UI 121·4–131·1]) and deaths (100·0% [83·4–115·9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest decline was observed for LRI deaths in males younger than 5 years (–70·7% [–77·2 to –61·8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53·0% [95% UI 37·7–61·8] in males and 56·4% [40·7–65·1] in females), and more than a quarter of LRI deaths among those aged 5–14 years were attributable to household air pollution (PAF 26·0% [95% UI 16·6–35·5] for males and PAF 25·8% [16·3–35·4] for females). PAFs of male LRI deaths attributed to smoking were 20·4% (95% UI 15·4–25·2) in those aged 15–49 years, 30·5% (24·1–36·9) in those aged 50–69 years, and 21·9% (16·8–27·3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21·1% (95% UI 14·5–27·9) in those aged 15–49 years and 18·2% (12·5–24·5) in those aged 50–69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11·7% (95% UI 8·2–15·8) of LRI deaths. Interpretation: The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children younger than 5 years was clearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, including promoting well eing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities. Funding: Bill & Melinda Gates Foundation. © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliate “Muhammad Aziz Rahman and Huy Nguyen” is provided in this record*

    Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990-2019 : results from the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories. METHODS: In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466-469, 470.0, 480-482.8, 483.0-483.9, 484.1-484.2, 484.6-484.7, and 487-489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4-B97.6, J09-J15.8, J16-J16.9, J20-J21.9, J91.0, P23.0-P23.4, and U04-U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23 109 site-years of vital registration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian meta-regression tool, to analyse age-sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and claims and inpatient data. Additionally, we estimated age-sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors. FINDINGS: Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240-275) LRI incident episodes in males and 232 million (217-248) in females. In the same year, LRIs accounted for 1·30 million (95% UI 1·18-1·42) male deaths and 1·20 million (1·07-1·33) female deaths. Age-standardised incidence and mortality rates were 1·17 times (95% UI 1·16-1·18) and 1·31 times (95% UI 1·23-1·41) greater in males than in females in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126·0% [95% UI 121·4-131·1]) and deaths (100·0% [83·4-115·9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest decline was observed for LRI deaths in males younger than 5 years (-70·7% [-77·2 to -61·8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53·0% [95% UI 37·7-61·8] in males and 56·4% [40·7-65·1] in females), and more than a quarter of LRI deaths among those aged 5-14 years were attributable to household air pollution (PAF 26·0% [95% UI 16·6-35·5] for males and PAF 25·8% [16·3-35·4] for females). PAFs of male LRI deaths attributed to smoking were 20·4% (95% UI 15·4-25·2) in those aged 15-49 years, 30·5% (24·1-36·9) in those aged 50-69 years, and 21·9% (16·8-27·3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21·1% (95% UI 14·5-27·9) in those aged 15-49 years and 18·2% (12·5-24·5) in those aged 50-69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11·7% (95% UI 8·2-15·8) of LRI deaths. INTERPRETATION: The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children younger than 5 years was clearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, including promoting wellbeing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities. FUNDING: Bill & Melinda Gates Foundation

    Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Although meningitis is largely preventable, it still causes hundreds of thousands of deaths globally each year. WHO set ambitious goals to reduce meningitis cases by 2030, and assessing trends in the global meningitis burden can help track progress and identify gaps in achieving these goals. Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we aimed to assess incident cases and deaths due to acute infectious meningitis by aetiology and age from 1990 to 2019, for 204 countries and territories. Methods We modelled meningitis mortality using vital registration, verbal autopsy, sample-based vital registration, and mortality surveillance data. Meningitis morbidity was modelled with a Bayesian compartmental model, using data from the published literature identified by a systematic review, as well as surveillance data, inpatient hospital admissions, health insurance claims, and cause-specific meningitis mortality estimates. For aetiology estimation, data from multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature studies were analysed by use of a network analysis model to estimate the proportion of meningitis deaths and cases attributable to the following aetiologies: Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococcus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Staphylococcus aureus, viruses, and a residual other pathogen category. Findings In 2019, there were an estimated 236 000 deaths (95% uncertainty interval [UI] 204 000–277 000) and 2·51 million (2·11–2·99) incident cases due to meningitis globally. The burden was greatest in children younger than 5 years, with 112 000 deaths (87 400–145 000) and 1·28 million incident cases (0·947–1·71) in 2019. Age-standardised mortality rates decreased from 7·5 (6·6–8·4) per 100 000 population in 1990 to 3·3 (2·8–3·9) per 100 000 population in 2019. The highest proportion of total all-age meningitis deaths in 2019 was attributable to S pneumoniae (18·1% [17·1–19·2]), followed by N meningitidis (13·6% [12·7–14·4]) and K pneumoniae (12·2% [10·2–14·3]). Between 1990 and 2019, H influenzae showed the largest reduction in the number of deaths among children younger than 5 years (76·5% [69·5–81·8]), followed by N meningitidis (72·3% [64·4–78·5]) and viruses (58·2% [47·1–67·3]). Interpretation Substantial progress has been made in reducing meningitis mortality over the past three decades. However, more meningitis-related deaths might be prevented by quickly scaling up immunisation and expanding access to health services. Further reduction in the global meningitis burden should be possible through low-cost multivalent vaccines, increased access to accurate and rapid diagnostic assays, enhanced surveillance, and early treatment.publishedVersio

    Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Hearing loss affects access to spoken language, which can affect cognition and development, and can negatively affect social wellbeing. We present updated estimates from the Global Burden of Disease (GBD) study on the prevalence of hearing loss in 2019, as well as the condition's associated disability. Methods We did systematic reviews of population-representative surveys on hearing loss prevalence from 1990 to 2019. We fitted nested meta-regression models for severity-specific prevalence, accounting for hearing aid coverage, cause, and the presence of tinnitus. We also forecasted the prevalence of hearing loss until 2050. Findings An estimated 1·57 billion (95% uncertainty interval 1·51–1·64) people globally had hearing loss in 2019, accounting for one in five people (20·3% [19·5–21·1]). Of these, 403·3 million (357·3–449·5) people had hearing loss that was moderate or higher in severity after adjusting for hearing aid use, and 430·4 million (381·7–479·6) without adjustment. The largest number of people with moderate-to-complete hearing loss resided in the Western Pacific region (127·1 million people [112·3–142·6]). Of all people with a hearing impairment, 62·1% (60·2–63·9) were older than 50 years. The Healthcare Access and Quality (HAQ) Index explained 65·8% of the variation in national age-standardised rates of years lived with disability, because countries with a low HAQ Index had higher rates of years lived with disability. By 2050, a projected 2·45 billion (2·35–2·56) people will have hearing loss, a 56·1% (47·3–65·2) increase from 2019, despite stable age-standardised prevalence. Interpretation As populations age, the number of people with hearing loss will increase. Interventions such as childhood screening, hearing aids, effective management of otitis media and meningitis, and cochlear implants have the potential to ameliorate this burden. Because the burden of moderate-to-complete hearing loss is concentrated in countries with low health-care quality and access, stronger health-care provision mechanisms are needed to reduce the burden of unaddressed hearing loss in these settings

    Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990-2019, for 204 countries and territories: the Global Burden of Diseases Study 2019

    Get PDF
    Background: The sustainable development goals (SDGs) aim to end HIV/AIDS as a public health threat by 2030. Understanding the current state of the HIV epidemic and its change over time is essential to this effort. This study assesses the current sex-specific HIV burden in 204 countries and territories and measures progress in the control of the epidemic. Methods: To estimate age-specific and sex-specific trends in 48 of 204 countries, we extended the Estimation and Projection Package Age-Sex Model to also implement the spectrum paediatric model. We used this model in cases where age and sex specific HIV-seroprevalence surveys and antenatal care-clinic sentinel surveillance data were available. For the remaining 156 of 204 locations, we developed a cohort-incidence bias adjustment to derive incidence as a function of cause-of-death data from vital registration systems. The incidence was input to a custom Spectrum model. To assess progress, we measured the percentage change in incident cases and deaths between 2010 and 2019 (threshold >75% decline), the ratio of incident cases to number of people living with HIV (incidence-to-prevalence ratio threshold <0·03), and the ratio of incident cases to deaths (incidence-to-mortality ratio threshold <1·0). Findings: In 2019, there were 36·8 million (95% uncertainty interval [UI] 35·1–38·9) people living with HIV worldwide. There were 0·84 males (95% UI 0·78–0·91) per female living with HIV in 2019, 0·99 male infections (0·91–1·10) for every female infection, and 1·02 male deaths (0·95–1·10) per female death. Global progress in incident cases and deaths between 2010 and 2019 was driven by sub-Saharan Africa (with a 28·52% decrease in incident cases, 95% UI 19·58–35·43, and a 39·66% decrease in deaths, 36·49–42·36). Elsewhere, the incidence remained stable or increased, whereas deaths generally decreased. In 2019, the global incidence-to-prevalence ratio was 0·05 (95% UI 0·05–0·06) and the global incidence-to-mortality ratio was 1·94 (1·76–2·12). No regions met suggested thresholds for progress. Interpretation: Sub-Saharan Africa had both the highest HIV burden and the greatest progress between 1990 and 2019. The number of incident cases and deaths in males and females approached parity in 2019, although there remained more females with HIV than males with HIV. Globally, the HIV epidemic is far from the UNAIDS benchmarks on progress metrics. Funding: The Bill & Melinda Gates Foundation, the National Institute of Mental Health of the US National Institutes of Health (NIH), and the National Institute on Aging of the NIH
    corecore