152 research outputs found

    Variability in Volume Metering Devices

    Get PDF
    The inherent variability of seed and fertilizer application from volumetric metering devices is not readily recognized. The Canadian Prairie Agricultural Machinery Institute (P AMI) suggests a maximum coefficient of variation (CV) of 15% among outlets for seeding grain or applying fertilizer. P AMI does not report down-the-row variability of individual outlets. Parameters that influence variability of volumetric measuring external fluted wheels such as rotational speed of the metering wheel, product delivery rate, seed size, and cell collection lengths were examined. In the first study, external fluted wheel meters on four grain drills were tested for seed delivery variability for wheat and soybeans, both among the metering outlets and down-the-row for individual meters. Tests on two additional drills, one an air drill and the other with external fluted metering, used two sizes of soybean seeds and two travel speeds. For wheat, down-the-row CV ranged from 12.5 to 22.5% and the CV among metering units ranged from 12.5 to 21 %. For soybeans, the CV ranged from 15.5 to 41.5% with the air drill having the lower CV. A faster travel speed gave a lower CV for both drills metering soybeans. In a second study, when metering wheat, the seeding rate variability due to cell size and seeding rate were evaluated. Each meter was evaluated with cells 0.48 or 0.96 m in length and seeding rates of 60, 80,90, and 100 kg/ha. The down-the-row CV ranged from 10 to 28% with 0.48 m length cells, and from 4 to 22% with 0.96 m length cells. Some of these CVs may be too high for a metering mechanism such as the fluted wheel to be used in SSCM

    Metering Characteristics Accompanying Rate Changes Necessary for Precision Farming

    Get PDF
    Agricultural machines used in precision fanning must adjust application rates according to the needs of each cell within a field. Changing from an initial application rate to a new rate while the machine travels from one cell to another in the field is accompanied with some misapplication. The severity of this misapplication depends on the down-the-row delivery characteristics of the metering system and the magnitude of the rate change from cell to cell. On-the-go rate change tests evaluated the down-the-row performance of an operator controlled metering system when increasing and decreasing wheat seeding rates by 10 and 20 kg/ha steps. The transition time from one cell to another ranged from 3 to 9 s depending upon the magnitude of the application rate change. The difference between the initial and final seeding rate was based on a simple index. This separation index was based upon the initial and final down-the-row seeding rate distributions. When the separation index was greater than or equal to zero, the difference between the initial and final application rate was considered to be suitable for precision fanning. The separation criterion was always satisfied with 20 kg/ha rate changes. For 10 kg/ha rate changes, the separation index was negative in most cases. This indicated that rate changes of 10 kg/ha or less were unlikely to provide detectable rate differences as the metering rate variability exceeded the magnitude of the 10 kg/ha rate change

    Metering Characteristics Accompanying Rate Changes Necessary for Precision Farming

    Get PDF
    Agricultural machines used in precision fanning must adjust application rates according to the needs of each cell within a field. Changing from an initial application rate to a new rate while the machine travels from one cell to another in the field is accompanied with some misapplication. The severity of this misapplication depends on the down-the-row delivery characteristics of the metering system and the magnitude of the rate change from cell to cell. On-the-go rate change tests evaluated the down-the-row performance of an operator controlled metering system when increasing and decreasing wheat seeding rates by 10 and 20 kg/ha steps. The transition time from one cell to another ranged from 3 to 9 s depending upon the magnitude of the application rate change. The difference between the initial and final seeding rate was based on a simple index. This separation index was based upon the initial and final down-the-row seeding rate distributions. When the separation index was greater than or equal to zero, the difference between the initial and final application rate was considered to be suitable for precision fanning. The separation criterion was always satisfied with 20 kg/ha rate changes. For 10 kg/ha rate changes, the separation index was negative in most cases. This indicated that rate changes of 10 kg/ha or less were unlikely to provide detectable rate differences as the metering rate variability exceeded the magnitude of the 10 kg/ha rate change

    The Hydroxamate Siderophore Rhequichelin Is Required for Virulence of the Pathogenic Actinomycete Rhodococcus equi

    Get PDF
    We previously showed that the facultative intracellular pathogen Rhodococcus equi produces a nondiffusible and catecholate-containing siderophore (rhequibactin) involved in iron acquisition during saprophytic growth. Here, we provide evidence that the rhbABCDE cluster directs the biosynthesis of a hydroxamate siderophore, rhequichelin, that plays a key role in virulence. The rhbC gene encodes a nonribosomal peptide synthetase that is predicted to produce a tetrapeptide consisting of N(5)-formyl-N(5)-hydroxyornithine, serine, N(5)-hydroxyornithine, and N(5)-acyl-N(5)-hydroxyornithine. The other rhb genes encode putative tailoring enzymes mediating modification of ornithine residues incorporated into the hydroxamate product of RhbC. Transcription of rhbC was upregulated during growth in iron-depleted medium, suggesting that it plays a role in iron acquisition. This was confirmed by deletion of rhbCD, rendering the resulting strain R. equi SID2 unable to grow in the presence of the iron chelator 2,2-dipyridyl. Supernatant of the wild-type strain rescued the phenotype of R. equi SID2. The importance of rhequichelin in virulence was highlighted by the rapid increase in transcription levels of rhbC following infection and the inability of R. equi SID2 to grow within macrophages. Unlike the wild-type strain, R. equi SID2 was unable to replicate in vivo and was rapidly cleared from the lungs of infected mice. Rhequichelin is thus a key virulence-associated factor, although nonpathogenic Rhodococcus species also appear to produce rhequichelin or a structurally closely related compound. Rhequichelin biosynthesis may therefore be considered an example of cooption of a core actinobacterial trait in the evolution of R. equi virulence

    Rhodococcus equi venous catheter infection: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Rhodococcus equi </it>is an animal pathogen that was initially isolated from horses and is being increasingly reported as a cause of infection in humans with impaired cellular immunity. However, this pathogen is underestimated as a challenging antagonist and is frequently considered to be a mere contaminant despite the potential for life-threatening infections. Most case reports have occurred in immunocompromised patients who have received organ transplants (for example kidney, heart, bone marrow) or those with human immunodeficiency virus infection. Infections often manifest as pulmonary involvement or soft tissue abscesses. Bacteremia related to <it>R. equi </it>infections of tunneled central venous catheters has rarely been described.</p> <p>Case presentation</p> <p>We report the case of a 63-year-old non-transplant recipient, non-HIV infected Caucasian woman with endometrial carcinoma who developed recurrent bloodstream infections and septic shock due to <it>R. equi </it>and ultimately required the removal of her port catheter, a subcutaneous implantable central venous catheter. We also review the medical literature related to human infections with <it>R. equi</it>.</p> <p>Conclusion</p> <p><it>R. equi </it>should be considered a serious pathogen, not a contaminant, particularly in an immunocompromised patient who presents with a central venous catheter-related bloodstream infection. Counseling patients with central venous catheters who participate in activities involving exposure to domesticated animals is recommended.</p

    The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

    Get PDF
    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines

    Different physiology of interferon-α/-γ in models of liver regeneration in the rat

    Get PDF
    Liver regeneration may take place after liver injury through replication of hepatocytes or hepatic progenitor cells called oval cells. Interferons (IFN) are natural cytokines with pleiotrophic effects including antiviral and antiproliferative actions. No data are yet available on the physiology and cellular source of natural IFNs during liver regeneration. To address this issue, we have analyzed the levels and biologic activities of IFN-α/IFN-γ in two models of partial hepatectomy. After 2/3rd partial hepatectomy (PH), hepatic levels of IFN-α and IFN-γ declined transiently in contrast to a transient increase of the IFN-γ serum level. After administration of 2-acetylaminofluorene and partial hepatectomy (AAF/PH model), however, both IFN-α and IFN-γ expression were up-regulated in regenerating livers. Again, the IFN-γ serum level was transiently increased. Whereas hepatic IFN-γ was up-regulated early (day 1–5), but not significantly, in the AAF/PH model, IFN-α was significantly up-regulated at later time points in parallel to the peak of oval cell proliferation (days 7–9). Biological activity of IFN-α was shown by activation of IFN-α-specific signal transduction and induction of IFN-α specific-gene expression. We found a significant infiltration of the liver with inflammatory monocyte-like mononuclear phagocytes (MNP) concomitant to the frequency of oval cells. We localized IFN-α production only in MNPs, but not in oval cells. These events were not observed in normal liver regeneration after standard PH. We conclude that IFN-γ functions as an acute-phase cytokine in both models of liver regeneration and may constitute a systemic component of liver regeneration. IFN-α was increased only in the AAF/PH model, and was associated with proliferation of oval cells. However, oval cells seem not to be the source of IFN-α. Instead, inflammatory MNP infiltrating AAF/PH-treated livers produce IFN-α. These inflammatory MNPs may be involved in the regulation of the oval cell compartment through local expression of cytokines, including IFN-α
    corecore