3,580 research outputs found

    Probing interactions in mesoscopic gold wires

    Full text link
    We have measured in gold wires the energy exchange rate between quasiparticles, the phase coherence time of quasiparticles and the resistance vs. temperature, in order to probe the interaction processes which are relevant at low temperatures. We find that the energy exchange rate is higher than expected from the theory of electron-electron interactions, and that it has a different energy dependence. The dephasing time is constant at temperatures between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is negative at large field scales, and the resistance decreases logarithmically with increasing temperatures, indicating the presence of magnetic impurities, probably Fe. Whereas resistivity and phase coherence measurements can be attributed to magnetic impurities, the question is raised whether these magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc, Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds (Kluwer, 2001) [SPEC-S00/083

    Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era

    Get PDF
    The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of present-day plants is presently unresolved. Here we show, in a series of quantitative analyses using fossil leaf characters and biophysical principles, that the delay was causally linked with a 90% drop in atmospheric pCO2 during the Late Palaeozoic era. In contrast to simulations for a typical Early Devonian land plant, possessing few stomata on leafless stems, those for a planate leaf with the same stomatal characteristics indicate that it would have suffered lethal overheating, because of greater interception of solar energy and low transpiration. When planate leaves first appeared in the Late Devonian and subsequently diversified in the Carboniferous period, they possessed substantially higher stomatal densities. This observation is consistent with the effects of the pCO2 on stomatal development and suggests that the evolution of planate leaves could only have occurred after an increase in stomatal density, allowing higher transpiration rates that were sufficient to maintain cool and viable leaf temperatures

    Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    Get PDF
    Positive plant diversity-productivity relationships have been reported for experimental semi-natural grasslands (Cardinale et al. 2006; Hector et al. 1999; Tilman et al. 1996) as well as temporary agricultural grasslands (Frankow-Lindberg et al. 2009; Kirwan et al. 2007; Nyfeler et al. 2009; Picasso et al. 2008). Generally, these relationships are explained, on the one hand, by niche differentiation and facilitation (Hector et al. 2002; Tilman et al. 2002) and, on the other hand, by greater probability of including a highly productive plant species in high diversity plots (Huston 1997). Both explanations accept that diversity is significant because species differ in characteristics, such as root architecture, nutrient acquisition and water use efficiency, to name a few, resulting in composition and diversity being important for improved productivity and resource use (Naeem et al. 1994; Tilman et al. 2002). Plant diversity is generally low in temporary agricultural grasslands grown for ruminant fodder production. Grass in pure stands is common, but requires high nitrogen (N) inputs. In terms of N input, two-species grass-legume mixtures are more sustainable than grass in pure stands and consequently dominate low N input grasslands (Crews and Peoples 2004; Nyfeler et al. 2009; Nyfeler et al. 2011). In temperate grasslands, N is often the limiting factor for productivity (Whitehead 1995). Plant available soil N is generally concentrated in the upper soil layers, but may leach to deeper layers, especially in grasslands that include legumes (Scherer-Lorenzen et al. 2003) and under conditions with surplus precipitation (Thorup-Kristensen 2006). To improve soil N use efficiency in temporary grasslands, we propose the addition of deep-rooting plant species to a mixture of perennial ryegrass and white clover, which are the most widespread forage plant species in temporary grasslands in a temperate climate (Moore 2003). Perennial ryegrass and white clover possess relatively shallow root systems (Kutschera and Lichtenegger 1982; Kutschera and Lichtenegger 1992) with effective rooting depths of <0.7 m on a silt loamy site (Pollock and Mead 2008). Grassland species, such as lucerne and chicory, grow their tap-roots into deep soil layers and exploit soil nutrients and water in soil layers that the commonly grown shallow-rooting grassland species cannot reach (Braun et al. 2010; Skinner 2008). Chicory grown as a catch crop after barley reduced the inorganic soil N down to 2.5 m depth during the growing season, while perennial ryegrass affected the inorganic soil N only down to 1 m depth (Thorup-Kristensen 2006). Further, on a Wakanui silt loam in New Zealand chicory extracted water down to 1.9 m and lucerne down to 2.3 m soil depth, which resulted in greater herbage yields compared with a perennial ryegrass-white clover mixture, especially for dryland plots (Brown et al. 2005). There is little information on both the ability of deep- and shallow-rooting grassland species to access soil N from different vertical soil layers and the relation of soil N-access and herbage yield in temporary agricultural grasslands. Therefore, the objective of the present work was to test the hypotheses 1) that a mixture comprising both shallow- and deep-rooting plant species has greater herbage yields than a shallow-rooting binary mixture and pure stands, 2) that deep-rooting plant species (chicory and lucerne) are superior in accessing soil N from 1.2 m soil depth compared with shallow-rooting plant species, 3) that shallow-rooting plant species (perennial ryegrass and white clover) are superior in accessing soil N from 0.4 m soil depth compared with deep-rooting plant species, 4) that a mixture of deep- and shallow-rooting plant species has greater access to soil N from three soil layers compared with a shallow-rooting two-species mixture and that 5) the leguminous grassland plants, lucerne and white clover, have a strong impact on grassland N acquisition, because of their ability to derive N from the soil and the atmosphere

    Obesity-associated melanocortin-4 receptor mutations are associated with changes in the brain response to food cues.

    Get PDF
    CONTEXT: Mutations in the melanocortin-4 receptor (MC4R) represent the commonest genetic form of obesity and are associated with hyperphagia. OBJECTIVE: The aim of this study was to investigate whether melanocortin signaling modulates anticipatory food reward by studying the brain activation response to food cues in individuals with MC4R mutations. Design/Setting/Participants/Main Outcome Measure: We used functional magnetic resonance imaging to measure blood oxygen level-dependent responses to images of highly palatable, appetizing foods, bland foods, and non-food objects in eight obese individuals with MC4R mutations, 10 equally obese controls, and eight lean controls with normal MC4R genotypes. Based on previous evidence, we performed a region-of-interest analysis centered on the caudate/putamen (dorsal striatum) and ventral striatum. RESULTS: Compared to non-foods, appetizing foods were associated with activation in the dorsal and ventral striatum in lean controls and in MC4R-deficient individuals. Surprisingly, we observed reduced activation of the dorsal and ventral striatum in obese controls relative to MC4R-deficient patients and lean controls. There were no group differences for the contrast of disgusting foods with bland foods or non-foods, suggesting that the effects observed in response to appetizing foods were not related to arousal. CONCLUSION: We identified differences in the striatal response to food cues between two groups of obese individuals, those with and those without MC4R mutations. These findings are consistent with a role for central melanocortinergic circuits in the neural response to visual food cues.This is the final published version. It first appeared at http://press.endocrine.org/doi/abs/10.1210/jc.2014-1651

    On the Energy Dependence of the Dipole-Proton Cross Section in Deep Inelastic Scattering

    Full text link
    We study the dipole picture of high-energy virtual-photon-proton scattering. It is shown that different choices for the energy variable in the dipole cross section used in the literature are not related to each other by simple arguments equating the typical dipole size and the inverse photon virtuality, contrary to what is often stated. We argue that the good quality of fits to structure functions that use Bjorken-x as the energy variable - which is strictly speaking not justified in the dipole picture - can instead be understood as a consequence of the sign of scaling violations that occur for increasing Q^2 at fixed small x. We show that the dipole formula for massless quarks has the structure of a convolution. From this we obtain derivative relations between the structure function F_2 at large and small Q^2 and the dipole-proton cross section at small and large dipole size r, respectively.Comment: 27 page

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Diagnostic accuracy of placental growth factor and ultrasound parameters to predict the small-for-gestational-age infant in women presenting with reduced symphysis-fundus height.

    Get PDF
    OBJECTIVES: To assess the diagnostic accuracy of placental growth factor (PlGF) and ultrasound parameters to predict delivery of a small-for-gestational-age (SGA) infant in women presenting with reduced symphysis-fundus height (SFH). METHODS: This was a multicenter prospective observational study recruiting 601 women with a singleton pregnancy and reduced SFH between 24 and 37 weeks' gestation across 11 sites in the UK and Canada. Plasma PlGF concentration  95(th) centile and oligohydramnios (amniotic fluid index < 5 cm) were compared as predictors for a SGA infant < 3(rd) customized birth-weight centile and adverse perinatal outcome. Test performance statistics were calculated for all parameters in isolation and in combination. RESULTS: Of the 601 women recruited, 592 were analyzed. For predicting delivery of SGA < 3(rd) centile (n = 78), EFW < 10(th) centile had 58% sensitivity (95% CI, 46-69%) and 93% negative predictive value (NPV) (95% CI, 90-95%), PlGF had 37% sensitivity (95% CI, 27-49%) and 90% NPV (95% CI, 87-93%); in combination, PlGF and EFW < 10(th) centile had 69% sensitivity (95% CI, 55-81%) and 93% NPV (95% CI, 89-96%). The equivalent receiver-operating characteristics (ROC) curve areas were 0.79 (95% CI, 0.74-0.84) for EFW < 10(th) centile, 0.70 (95% CI, 0.63-0.77) for low PlGF and 0.82 (95% CI, 0.77-0.86) in combination. CONCLUSIONS: For women presenting with reduced SFH, ultrasound parameters had modest test performance for predicting delivery of SGA < 3(rd) centile. PlGF performed no better than EFW < 10(th) centile in determining delivery of a SGA infant

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    The relationship between the presence of anti-cyclic citrullinated peptide antibodies and clinical phenotype in very early rheumatoid arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anti-cyclic citrullinated peptide (anti-CCP) antibodies are highly specific for RA, but are not detectable in all RA patients. The aim of this study was to establish whether the clinical phenotypes of anti-CCP positive and negative disease are distinct at the earliest clinically apparent phase of disease.</p> <p>Methods</p> <p>Patients were recruited from the Birmingham early inflammatory arthritis clinic. Participants were included in the current study if they presented within 3 months of symptom onset and fulfilled 1987 ACR criteria for RA at some point during an 18 month follow-up. Data were collected on demographic variables, joint symptoms and tender (n = 68) and swollen (n = 66) joint counts. CRP, ESR, rheumatoid factor and anti-CCP2 status were measured.</p> <p>Results</p> <p>92 patients were included (48 anti-CCP positive). The anti-CCP positive and negative groups were comparable in terms of demographic variables, inflammatory markers, joint counts and 1987 ACR classification criteria, except that more anti-CCP positive patients were rheumatoid factor positive (83.3% vs. 11.4%, p < 0.01). There was no significant difference in the pattern of joint involvement, except for an increased prevalence of knee joint swelling in anti-CCP positive patients (42.9% vs. 22.2%, p = 0.03).</p> <p>Conclusions</p> <p>Patients with and without anti-CCP antibodies present in a similar way, even within three months of clinically apparent disease that eventually develops into RA.</p

    Carcinoma developing in ectopic pancreatic tissue in the stomach: a case report

    Get PDF
    The development of pancreatic tissue outside the confines of the main gland, without anatomic or vascular connections between them, is a congenital abnormality referred to as heterotopic pancreas. A heterotopic pancreas in the gastrointestinal tract is usually discovered incidentally and the risk of its malignant transformation is extremely low. In this study, we describe the first case of endoepithelial carcinoma arising in a gastric heterotopic pancreas of a 56-year old woman in Greece. She presented with epigastric pain, periodic nausea and vomiting. Esophagogastroduodenoscopy revealed an ulcerated lesion in the gastric antrum, biopsies of which showed intense epithelial dysplasia with incipient malignant degeneration. The pathology report of the distal gastrectomy specimen demonstrated a 2 cm in diameter ulcerative mass in the gastric antrum. Microscopically, an endoepithelial (in situ) carcinoma of the gastric antrum was determined, which in places turned into an microinvasive endomucosal adenocarcinoma. It also incidentally demonstrated heterotopic pancreatic ducts, detected within the mucosa to the muscularis propria of the same region of the stomach, in which an endoepithelial (in situ) carcinoma was evolving. The follow-up course was uneventful 6 months postoperatively
    corecore