56 research outputs found

    Constitutive modeling and mechanical behavior prediction of biodegradable polymers during degradation

    Get PDF
    A large range of biodegradable polymers has been used to produce implantable medicaldevices, such as suture fibers, fixation screws and soft tissue engineering devices. Apartfrom biological compatibility, these devices should also be functional compatible andperform adequate mechanical temporary support during the healing process. Themechanical behavior of biodegradable polymers is known to be rate dependent and toexhibit hysteresis upon cyclic loading. On the other hand, ductility, toughness andstrength of the material decay during hydrolytic degradation. Continuum basedmechanical models can be used as dimensioning tools for biodegradable polymericdevices, since they enable to predict its mechanical behavior in a complex load andenvironment scenario, during the hydrolytic degradation process.The existing models can be divided into two categories: the time-dependent models andthe time-independent models. Linear elastic or non-linear elastic models, such as elastoplasticor hyperelastic models, can simulate the time-independent response, whichcorresponds to the relaxed configuration and represent the relaxed state. However, theseapproaches neglect the time-dependent mechanical behavior. To consider timedependency, dissipative elements must be used in the model formulation.A revision of the three-dimensional constitutive models generally used for polymers ispresented in this chapter. These models are based on the concept of networks, combiningelastic, sliding and dissipative elements, in order to simulate the time-dependentmechanical behavior, although neglecting changes in the properties of the material duringhydrolytic degradation process. Thus, some of these models were recently adapted toaddress the hydrolytic degradation process. A common method consists on becomingsome of the material model parameters dependent on a scalar variable, which expressesthe hydrolytic damage.Furthermore, the advantages and limitations of the models arediscussed, based on the correlation between predictions and experimental results of ablend of polylactic acid and polycaprolactone (PLA-PCL), which include monotonictensile tests at different strain rates and quasi-static cyclic unloading-reloading

    Optimization for drilling process of metal-composite aeronautical structures

    Get PDF
    Metal-composite laminates and joints are applied in aircraft manufacturing and maintenance (repairing) using aluminum alloys (AA) and glass fiber-reinforced polymer (GFRP). In these applications, drilling has a prominent place due to its vast application in aeronautical structures’ mechanical joints. Thus, this study presents the influence of uncoated carbide drills (85C, 86C, H10N), cutting speeds (vc = 20, 40, and 60 m min−1), and feed rates (f = 0.05, 0.15, and 0.25 mm rev−1) on delamination factor, thrust force ( Ft), and burr formation in dry drilling metal-composite laminates and joints (AA2024/GFRP/AA2024). Experiments were performed, analyzed, and optimized using the Box–Behnken statistical design. Microscopic digital images for delamination evaluation, piezoelectric dynamometer for thrust force acquisition, and burr analysis were considered. The major finding was that the thrust force during drilling depends significantly on the feed rate. Another significant factor was the influence of the drill type (combined or not with feed rate). In fact, it was verified that the feed rate and the drill type were the most significant parameters on the delamination factor, while the feed rate was the most relevant on thrust force. The cutting speed did not affect significantly thrust force and delamination factor at exit (FdaS). However, the combination f × vc was significant in delamination factor at entrance (FdaE). Based on the optimized input parameters, they presented lower values for delamination factors (FdaE=1.18 and FdaS=1.33) and thrust force ( Ft=67.3N). These values were obtained by drilling the metal-composite laminates with 85C-tool, 0.05 mm rev−1 feed rate, and 20 m min−1 cutting speed. However, the burrs at the hole output of AA2024 were considered unsatisfactory for this specific condition, which implies additional investigation

    A multiobjective optimization framework for strength and stress concentration in variable axial composite shells : a metaheuristic approach

    Get PDF
    A metaheuristic approach for variable axial composites considering multiobjective optimization is investigated. The proposed methodology is based on the combination of three main parts: a methodology for defining the orientation of the fibers in the laminate, a structural analysis program (based on the Finite Element Method) and an optimization algorithm. It is important to highlight that a radial basis function (RBF), which describes a smooth fiber pattern, is generated using control points. The novelties of the present methodology consist of a proposal for a generalized parameterization technique, which allows the investigation of mechanical strength and stress concentration of variable axial composites. Thus, NSGA-II multiobjective genetic algorithm is used as optimization tool to define the fiber orientations. Besides, ax metaheuristic approach is used in situations when it is desirable to simultaneously minimize the stress concentration factor () and a failure criterion index ( or Φ). Two case studies are investigated: a double notched plate and a tube with a transverse hole

    A new damage model for composite laminates

    Get PDF
    Aircraft composite structures must have high stiffness and strength with low weight, which can guarantee the increase of the pay-load for airplanes without losing airworthiness. However, the mechanical behavior of composite laminates is very complex due the inherent anisotropy and heterogeneity. Many researchers have developed different failure progressive analyses and damage models in order to predict the complex failure mechanisms. This work presents a damage model and progressive failure analysis that requires simple experimental tests and that achieves good accuracy. Firstly, the paper explains damage initiation and propagation criteria and a procedure to identify the material parameters. In the second stage, the model was implemented as a UMAT (User Material Subroutine), which is linked to finite element software, ABAQUS (TM), in order to predict the composite structures behavior. Afterwards, some case studies, mainly off-axis coupons under tensile or compression loads, with different types of stacking sequence were analyzed using the proposed material model. Finally, the computational results were compared to the experimental results, verifying the capability of the damage model in order to predict the composite structure behavior. (C) 2011 Elsevier Ltd. All rights reserved.KU Leuven Arenberg doctoral schoolKU Leuven Arenberg doctoral schoolCAPESCAPESSao Paulo Research Foundation (FAPESP) [2009/00544-5]Sao Paulo Research Foundation (FAPESP)AFOSRAFOSRUSArmyUS-Army [FA9550-10-1-0011

    Delamination influence on elastic properties of laminated composites

    Get PDF
    International audienceThe present work aims to predict the behavior of effective elastic properties for laminated composites, considering localized damage in the interface between two layers. In practical terms, the damage in the adhesion, which influences the effective elastic properties of a laminate, is evaluated like a delamination between adjacent layers. Thus, the effective properties of laminated composites with different delamination extensions are calculated via finite element method and two-scale asymptotic homogenization method. It is investigated how the properties of the laminated composites are affected by the delamination extension and the thickness of the interface between layers. It is possible to conclude that the effective coefficient values decrease as the damage extension increases due to the fact that the delamination area increases. Besides, for all effective coefficients, except the effective coefficients C * 12 , C * 13 , and C * 23 , in the case without delamination, the coefficients decrease as the adhesive region thickness increases, and almost all coefficients decrease for complete separation of the interface. Numerical and analytical results are compared in order to show the potentialities and limitations of the proposed approaches. Finally, a numerical approach is used to simulate a specific case, where the interface is considered a functionally graded material

    Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior

    Get PDF
    Assessing a full set of mechanical properties is a rather complicate task in the case of foams, especially if material models must be calibrated with these results. Many issues, for example anisotropy and heterogeneity, influence the mechanical behavior. This article shows through experimental analyses how the microstructure affects different experimental setups and it also quantifies the degree of anisotropy of a poly(vinyl chloride) foam. Monotonic and cyclic experimental tests were carried out using standard compression specimens and non-standard tensile specimens. Results are complemented and compared with the aid of a digital image correlation technique and scanning electron microscopy analyses. Mechanical properties (e.g., elastic and plastic Poisson's ratios) are evaluated for compression and tensile tests, for two different material directions (normal and in-plane). The material is found to be transversely isotropic. Differences in the results of the mechanical properties can be as high as 100%, or even more depending on the technique used and the loading direction. Also, the experimental analyses show how the material's microstructure behavior, like the evolution of the herein identified yield fronts and a spring back phenomenon, can influence the phenomenological response and the failure mechanisms as well as the hardening curves. POLYM. ENG. SCI., 52:2654-2663, 2012. (C) 2012 Society of Plastics EngineersNational Council for Research and Development (CNPq)National Council for Research and Development (CNPq) [133595/2008-0]Sao Paulo Research Foundation (FAPESP) [2009/00544-5]Sao Paulo Research Foundation (FAPESP

    Effective properties evaluation for smart composite materials

    Get PDF
    The purpose of this article is to present a method which consists in the development of unit cell numerical models for smart composite materials with piezoelectric fibers made of PZT embedded in a non-piezoelectric matrix (epoxy resin). This method evaluates a globally homogeneous medium equivalent to the original composite, using a representative volume element (RVE). The suitable boundary conditions allow the simulation of all modes of the overall deformation arising from any arbitrary combination of mechanical and electrical loading. In the first instance, the unit cell is applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. The numerical results are compared to other methods reported in the literature and also to results previously published, in order to evaluate the method proposal. In the second step, the method is applied to calculate the equivalent properties for smart composite materials with square cross section fibers. Results of comparison between different combinations of circular and square fiber geometries, observing the influence of the boundary conditions and arrangements are presented

    Contribution to the study of damage and progressive failure on composite structures

    No full text
    Neste trabalho buscou-se propor e implementar um modelo de material capaz de prever o comportamento mecânico de estruturas em compósitos poliméricos reforçados (CPR). Inicialmente fez-se um levantamento bibliográfico sobre os modos de danificação intralaminar e falhas interlaminares bem como sobre formas de abordagem (analítica e numérica) para tratar esses problemas. Em seguida, foram apresentadas em detalhes as etapas experimentais executadas, descrevendo todo o procedimento de fabricação dos corpos-de-prova e os resultados obtidos a partir dos ensaios quase-estáticos de tração, compressão, cisalhamento e flexão. Com base nesses resultados e em informações provenientes da literatura, propõem-se alguns modelos de material que foram implementados em sub-rotinas FORTRAN. Tais modelos são posteriormente compilados em conjunto com um programa de elementos finitos (ABAQUS®) a fim de serem avaliados e terem seus parâmetros calibrados. Numa primeira fase, através de simulações computacionais dos ensaios de tração e compressão avaliou-se os modelos de material implementados. Numa segunda fase, os parâmetros foram calibrados tomando como base três estudos de caso (flexão, endentação e teste de impacto) envolvendo seqüências de empilhamento distintas. Após a simulação computacional desses estudos, apresentou-se a proposta de uma metodologia para avaliar problemas de impacto a baixa velocidade em estruturas laminadas. Conclui-se assim que o presente projeto de pesquisa traz contribuições inovadoras, mas também apresenta várias perspectivas de trabalhos futuros.In this work, material models were proposed to predict the mechanical behavior of composite structures. First of all, it was done a study about damage intra-ply and inter-ply (delamination) on composite materials and about analytical and numerical approaches to solve problems of progressive damage on composite structures was performed. After, many specimens were manufactured and experimental tests (tensile, compression, shear and flexural tests) were carried out. Experimental results and information from literature were used to develop some material models, which were implemented using FORTRAN compiler. These material models were compiled with a commercial finite element program (ABAQUS®) in order to evaluate and calibrate parameters of the models. In the first step, computational simulations of tensile and compression test were carried out to evaluate material models implemented. In the second step, the parameters of the material models were calibrated using three case studies (flexural, indentation and impact test) with some staking sequences. After that, a methodology was proposed to evaluate impact problems on composite structures under low velocity. Therefore, this research project not only shows new contributions but also suggests many future investigations
    • …
    corecore