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ABSTRACT

A large range of biodegradable polymers has beed t produce implantable medical
devices, such as suture fibers, fixation screwssafidtissue engineering devices. Apart
from biological compatibility, these devices shoualldo be functional compatible and
perform adequate mechanical temporary support guthre healing process. The
mechanical behavior of biodegradable polymers iswknto be rate dependent and to
exhibit hysteresis upon cyclic loading. On the othand, ductility, toughness and
strength of the material decay during hydrolyticgmelation. Continuum based
mechanical models can be used as dimensioning foolbiodegradable polymeric
devices, since they enable to predict its mechhtiehavior in a complex load and
environment scenario, during the hydrolytic degtixteprocess.

The existing models can be divided into two categgorthe time-dependent models and
the time-independent models. Linear elastic or limear elastic models, such as elasto-
plastic or hyperelastic models, can simulate theetindependent response, which
corresponds to the relaxed configuration and remtethe relaxed state. However, these
approaches neglect the time-dependent mechanichhvime. To consider time
dependency, dissipative elements must be usee imddel formulation.

A revision of the three-dimensional constitutive dats generally used for polymers is
presented in this chapter. These models are basttbeaoncept of networks, combining
elastic, sliding and dissipative elements, in order simulate the time-dependent
mechanical behavior, although neglecting changéseiproperties of the material during
hydrolytic degradation process. Thus, some of thesdels were recently adapted to
address the hydrolytic degradation process. A commethod consists on becoming
some of the material model parameters dependeat smalar variable, which expresses
the hydrolytic damage.Furthermore, the advantages lianitations of the models are
discussed, based on the correlation between pi@ticind experimental results of a
blend of polylactic acid and polycaprolactone (PB&L), which include monotonic
tensile tests at different strain rates and quasiescyclic unloading-reloading.

Vieira, A.C., Guedes, R.M., Tita, V., “Constitutive modeling and mechanical behavior prediction of biodegradable polymers
during degradation.” In: “Biodegradable Polymers. Volume 1: Advancement in Biodegradation Study and Applications”,
Nova Publisher, 2015, p.31-75, ISBN 978-1-63483-632-6



2 André C. Vieira, Rui M. Guedes, Volnei Tita

Keywords. constitutive models, mechanical behavior, bioddgble polymers, hydrolytic
degradation

INTRODUCTION

Biodegradable polymers can be classified as eitt@urally derived polymers or
synthetic polymers. A large range of mechanicapprties and degradation rates are possible
among these polymers. However, the prediction @& thechanical behavior of these
biodegradable devices is complex, because notthelynechanical properties evolve during
degradation, but also these biodegradable polynmenmsiany situations, cannot be modeled
using simple elastic constitutive equations. Dughtononlinear nature of the stress vs. strain
relation, the classical linear elastic model is walid for simulation under large strains.
Current designs of biodegradable devices are dargat by considering elastic or
elastoplastic behavior and neglect any changinghenmechanical behavior of the device
with degradation (Moore et al., 2010). For manyniédical applications, the biodegradable
polymeric structures are submitted to cyclic logdabove the elastic limit. Hence, they are
prone to accumulate plastic strain at each cycléchvmay lead to laxity and consequent
failure. For instance, Grabow et al. (2007) shotted significant creep of polylactides under
a constant load leads to strain accumulation ahapse.

Concomitantly to its nonlinear nature, the mechariehavior of polymeric materials is
also temperature and strain rate dependent (Baadenhet al., 1997). However, due to
isothermal host environment, when the implantabd®icks are in service, temperature
dependence will be neglected in this chapter. Ma@eounder low strain rates, the
mechanical behavior is viscous and, under highinstrates, it becomes brittle elastic
(Bardenhagen et al., 1997). Thus, the polymerichaeical behavior should be modeled by
different constitutive laws, considering the stre@te range of interest (Ferry, 1980, Ward,
1979). For example, Soares (2008) and Grabow e(28D7) confirmed the non linear
viscoelastic characteristics of PLA. The mechankmtavior of biodegradable polymers is
also known to exhibit hysteresis, i.e. energy @gason in form of heat upon cyclic loading,
as shown by Vieira et al. (2013) for PLA-PCL. THere, time-dependent constitutive
models are required to simulate such phenomena.

As observed in polymers, it is known that the stiesa biodegradable polymer will relax
towards an equilibrium state after being subjedtwedh strain-step (Miller and Williams,
1984). This relaxed state has been simulated lealielastic, elasto-plastic or hyperelastic
models, but disregarding the rate dependency effiéoteover, the response of an elastic or
hyperelastic material model implies that the logdiand unloading paths coincide.
Mechanical properties of biodegradable polymerscaremonly assessed within the scope of
linearized elasticity, despite the large strainkjclv are observed before material fracture.
Thus, inelastic or hyperelastic models are requitegimulate such strain range. Hence,
considering the response of biodegradable polymdessical models such as the neo-
Hookean and Mooney-Rivlin models, usually applieat incompressible hyperelastic
materials, have been used to predict mechanicavimhuntil rupture of non-degraded PLA
(Garlotta, 2001, Lunt, 1998) under quasi-static atonic loading. A single-order, isotropic
Ogden material hyperelastic model was also usegn@uw et al., 2011) to simulate the
mechanical behavior evolution during degradatioa pblyester-urethane scaffold. However,
those approaches neglect changes in the propeftike material during degradation process.
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In the case of elasto-plastic models, after unlu@ghhase, the material returns to a
relaxed equilibrium sate, which includes inelasti@in. Since these models include at least
one sliding element in its formulation, the loadiagd unloading paths do not coincide.
Although, those models neglect the time-dependesthamnical behavior, they can simulate
the time-independent response, which correspontitetrelaxed configuration.

To consider time dependency, dissipative elemaisesented by time inhomogeneous
relations must be used in the model formulatiore $implest viscoelastic models consider a
linear combination of springs (using the Hooke'sv)laand dashpots (using Newtonian
damper with linear viscosity). More complex vargof these simple models are based on the
same concept of networks, combining elastic, gjdimd dissipative elements, in order to
simulate the equilibrium response of the materiad she time-dependent deviation from
equilibrium relaxed configuration.

However, those models are only able to simulateinfiteal mechanical behavior of
polymers, neglecting changes in the properties haf material during the hydrolytic
degradation process. It is possible to find onhy feientific contributions in the literature
(Khan and El-Sayed, 2013, Muliana and Rajagopdl22&oares, 2008; Soares et al., 2010,
Vieira et al. 2014) about the simulation of the heucal behavior of biodegradable polymer
during the hydrolytic degradation process. Theeeftine aim of this chapter is to explain a
methodology to adapt different constitutive modilsorder to simulate the mechanical
behavior during the hydrolytic degradation proc@$se concept behind this type of approach
is to change the material model parameters asifumof a scalar field, which represents the
hydrolytic degradation and the correspondent chantdamage, inducing the changes of the
mechanical behavior of the biodegradable matertdésice, in the next section, there is a
presentation about biodegradation process, namescritbing the physical-chemical
mechanisms and a simple way to model the degradptacess based on the random scission
assumption. Furthermore, the hydrolytic damage éfindd and a failure criterion is
established for biodegradable materials as funaifaegradation time. Then, after that, there
is a brief review of some constitutive models gatigrused to simulate the mechanical
behavior of conventional polymers under hydrolytiegradation by using the proposed
methodology. Some examples are shown, and thetfateheach type of constitutive model
are discussed and compared for different loaditugsbns.

BIODEGRADATION PROCESS

All biodegradable polymers contain hydrolysableoasydable bonds. This makes the
material sensitive to moisture, heat, light and afechanical stress. These different types of
polymer degradation (photo, thermal, mechanical ememical degradation) can be present
alone or combined, working synergistically to thegdhdation. Usually, the most important
degradation mechanism of biodegradable polymerkémical degradation via hydrolysis or
enzyme-catalyzed hydrolysis (Gopferich, 1996). ldyBis rate is affected by the
temperature or mechanical stress, molecular stejcaster group density as well as by the
degradation media used. The crystalline degreebeay crucial factor, since enzymes attack
mainly the amorphous domains of a polymer. The niogtortant factor is its chemical
structure and the occurrence of specific bondsgaisnchains. Like those in groups of esters,
amides, etc., which might be susceptible to hydislywhen exposed to water (Nikolic et al.,
2003; Herzog et al., 2006).
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Another important distinction must be made betwermsion and degradation. Both are
irreversible processes. The erosion process cateseribed by phenomenological diffusion-
reaction mechanisms. An aqueous media diffuses thto polymeric material while
oligomeric products diffuse outwards to be then-dssimilated by the host environment.
Then, there is material erosion with correspondesits loss. Hence, the degree of erosion is
estimated from the mass loss. On the other hargtadation refers to mechanical damage
and depends on hydrolysis. Within the polymeric rirathydrolytic reactions take place,
mediated by water and/or enzymes. Polymer degmaudasi the first step of the erosion
phenomenon and can be estimated by measuring thetiem of molecular weight, by size
exclusion chromatography (SEC) or gel permeatiomroatography (GPC), or the tensile
strength evolution (by universal tensile testirig)erefore, the hydrolytic degradation process
is included on the erosion process. The compleadsi@n of the polymer is known to take
substantially longer than the complete loss ofiterssrength. During this first phase, aqueous
solution penetrates the polymer, followed by hyghiol degradation, converting these very
long polymer chains into shorter water-soluble rfinagts.

Physical-Chemical mechanisms and modeling

Hydrolysis has been traditionally modeled by usinfirst order kinetics equation based
on the random scission kinetic mechanism of hydis|yaccording to the Michaelis—Menten
scheme (Bellenger et al., 1995). In the case gfhatic polyesters, such as PLA, each
polymer molecule, with its own carboxylic and aloblend groups, is broken in two. This
occurs randomly in the middle at a given ester grdso, the number of carboxylic end
groups will increase with degradation time, while molecules are being split by hydrolysis.
The following first-order equation describes the&to}ytic process (Farrar and Gilson, 2002),
in terms of the rate of formation of carboxyl endups:

de =kewc=uc Eq. 1
dt

wheree, ¢c andw are the concentrations of ester groups, carbaxyms and water in the
polymer, respectivelyk is the hydrolysis rate constant anid the degradation time.is the
hydrolytic degradation rate of the material, whietm be determined by measuring strength or
molecular weight evolution during hydrolytic degaidn (see Vieira et al., 2011a). Since the
concentration of carboxyl end groups is givench¢t/M,, whereM, is the number-average
molecular weight of the polymer, the evolution bé thumber-average molecular weight is
given, after integration, by:

M, =M e™ Eq. 2

whereM,; is the number-average molecular weight of the pelyat degradation time
and M, is the initial (non-degraded) value. Degradatiate u is affected by many factors
that can vary along the volume or during degradatimr example, temperature will increase
the hydrolysis rate constaktwhich is associated to the probability of bondsions, due to
excitement of the molecules. In the case of impldlet devices, the temperature is kept
constant as in the human body, i.e. at the homisostdue around 37°C.

The influence of the mechanical environment in tlegradation rate has been also
reported at literature (Chu, 1985; Miller and Wéiiti, 1984). Similarly to temperature, stress
applied during the degradation process also inesetiye probability of bond scissions, and



Constitutive modeling and mechanical behavior jgtexh 5
of biodegradable polymers during degradation -

consequently increases the degradation reactien amtstantk. Some studies on rubbery
polymers include the effect of micro structural mfjes in the polymer’'s macromolecules,
crosslinks and entanglements (Huntley et al., 1%®&§agopal et al., 2007; Rajagopal and
Wineman, 1992; Shaw et al., 2005; Smeulders andn@ge, 1999;Wineman and Min,
2002). In those approaches, not specifically rdlabehydrolytic degradation, micro structural
changes depend on state variables, which locallpsore chain stretches. Later, other
researchers (Khan and El-Sayed, 2013; Muliana ajaig@pal; 2012, Soares, 2008; Soares et
al., 2010) developed their methodologies basedhasetworks previously published, in order
to introduce the influence of the strain field e thydrolytic degradation.

Concerning the degradation dependence, some autqpwded that the degradation rate
of PLA and blends of PLA-PCL was significantly affed by some enzymes (Gan et al.,
1999; Williams, 1981). The pH of the aqueous medsd affects the degradation reaction
rate constank (Tsuji and Ikada, 1998; Tsuji and lkada, 2000;jiTand Nakahara, 2001).
Again, in the case of implantable device, pH camrdesidered constant, because, pH is kept
at a homeostatic value in the human body. Hencmany cases, it can be assumed that the
hydrolysis ratek is constant over time due to constant temperaloagl, (i.e. constant stress
field during degradation) and degradation media.

In the particular case of biodegradable polymeegewdiffusion is very fast compared to
water-mediated hydrolysis. Therefore, water caagsimed, in many cases, to be spread out
uniformly in the sample volume (i.e. no diffusiopntrol) from the beginning of erosion
process, and hydrolysis promotes homogeneous bidkiom (Li et al.,, 1990). This
assumption is reasonable for small thickness arymdevicesdHencew can also be assumed
constant from the beginning along the volume. Qifsar, the water concentration along the
volume and during time can be computed using thk’'$-Second Law. In this early stage of
erosion, when mechanical strength reduces significathe concentration of ester groups
located at the backbone chains is nearly consfaespite of the scissions, which occur
randomly in the ester groups, the macromoleculesaire large (Gopferich and Langer,
1993). Considering all this assumptions, the demjfad rate,u=kwe may be considered
constant during the whole degradation processoitmescases, as explained previously, these
assumptions are not valid, mainly because of hg&reous diffusion of water, or due to the
presence of a complex three-dimensional stresd, fiethich evolves during the degradation
process.

Hydrolytic damage and failurecriteria

It is well known that the mechanical behavior wveillolve during time, due to hydrolytic
chain scission in the polymeric macromolecules.fijure la is shown the mechanical
response to uniaxial monotonic tensile tests unipture for PLA-PCL fibers during
hydrolytic degradation The reduction of moleculagight is linked to this evolution in
mechanical response of biodegradable polymersadtbdeen shown by Vieira et al. (2011a)
that the fracture strengerduring degradation can be predicted by the follgnéquation:

—_ —-ut _ —kwet
o, =0, " =0, Eqg. 3

whereg; is the strength of the polymer at degradation timedoy is the initial (non-
degraded) strength. The evolution of fracture gfitenaccording to equation 3, is similar to
the evolution of the number-average molecular wemfhthe polymer (see figure 1b) in
accordance to equation 2. In a semi logarithmicesgntation of normalized strength or
number-average molecular weight versus degradatiore, the degradation rate
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corresponds to the slope of the linear fit. Furttletails of this degradation study can be
found in Vieira et al. (2011a).
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#igure 1 — a) Monotonic tensile test results dutigdrolytic degradation of PLA-PCL fibers;
b) Evolution of the normalized strength and molacweight during degradation of
PLA-PCL fibers (adapted from Vieira et al., 2011a)

The hydrolytic damage was defined by Vieira e{2011a), according to equation:

d,=1-—t=1-—"=1-¢™ Eq. 4

From equation 4, it is possible to relate hydralydamage with strength and molecular
weight. Hence, hydrolytic damage is a local intenaiable since the degradation rate can
vary locally in the case of heterogeneous degradaln order to simulate the evolution of the
mechanical behavior of biodegradable polymers, dbastitutive models must be adapted
accordingly to hydrolytic damag.

It is possible to find only few scientific contritbons in the literature about modeling of
the mechanical behavior of biodegradable polymensnd the hydrolytic degradation
process. Those approaches are based on hyperetastids (Soares et al., 2010; Vieira et al.,
2011a), or on quasi-linear viscoelastic models {&had and Rajagopal, 2012), or on
viscoplastic models (Khan and El-Sayed, 2012; ¥ieir al., 2014). These approaches enable
the modeling of biodegradable structures duringaldgtion by assuming that the constitutive
model parameters have been changed according tmlyyd damage. In Muliana and
Rajagopal (2012), hydrolytic damage is assumedetadpendent on the deviatoric strain
tensor and the concentration of water.

CONSTITUTIVE MODELSFOR POLYMERSWITH BIODEGRADATION
PROCESS
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Continuum mechanics is always the base for thergénation of constitutive models to
three-dimensional approach. Hence, for the sal@mwipleteness, there is a brief review and
definitions on finite continuum mechanics in thep&pdix and more details can be found in
Malvern (1969). A constitutive model for a mechanhianalysis is a relationship between the
response of a body (for example, strain state)thedtress state due to the forces acting on
the body, which can include the environmental éffethe actual models can be divided into
two main categories: the time-independent andithe-tependent models.

Linear eastic constitutive model

In uniaxial models, the applied stress, considarefbrm along the surface perpendicular
to the applied load, is the ratio between the applbad and the initial surface area (nominal
stress, i.e. Lagrange descriptiosgF/A,, or alternatively the ratio between the applieadio
and the current surface area (true stress, i.erBEelscription)g=F/A. In this case, the linear
strain is defined by the ratio between elongatiod ¢he initial lengthg=(L- Lo)/Lo, and
stretch is defined by the ratio between curremgtlerand the initial lengtbi=1+ ¢ =L/L,. The
uniaxial linear elastic model (the Hooke's law)addishes a linear relation between stress and
strain,o= Eg, defined by a single material paramefefYoung modulus). This linear elastic
rheological model is represented by a linear spring

The generalization of the linear constitutive model three-dimensional approach,
according to a Largrange description, considerietation between the second Piola-
Kirchhoff stress tensd® and the Lagrangian strain teng(see definitions in Appendix), is
defined by an elastic stiffness fourth order ter@sor

S; =CiEx Eq.5

Alternatively, in the Euler description, considerithe relation between the Cauchy stress
tensorT and the Eulerian strain teng®r(see definitions in Appendix):

T = c;*i*jkI ET« Eq. 6

[

The relation between the two elastic stiffness des)sin the Lagrange and Euler
descriptions, is:

. 1

Cijpm = 3 FipFiC

where the Jacobiad) the deformation gradieft and the rotation tens& are defined in
Appendix.

Due to the isotropic nature of polymers, only isptc models will be discussed in this
chapter. Hence, considering an isotropic mateoialy two independent material parameters
are needed to define all the components of theielasffness fourth order tensor. Most
commonly, the generic three-dimensional linear tisve model, for isotropic materials, is
presented in the form (according to Lagrange ardrElescription respectively):

quIkaFnI = R ip R qu qulR mkR nl Eq 7
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E v

> :m{En *EEM} =
E * v .

Ti = 1+U{Eij ¥ 1-2v Ekkd”} =49

where the Young's modulus and the Poisson’s ratipare the two independent material
parameters. The Kronecker delta functifynis defined in Appendix. If the stress tensor is
known, it is possible to compute the strain tensing the inverse relation:

n 0

jki S

iiki T

i Eq. 10

m m

ki
ki

: Eq. 11

where S, and S*;jkl are elastic compliance fourth order tensors inlthgrange and

Euler descriptions, respectively. Therefore, fatngpic materials, the constitutive relation
may have the form:

1+v v
B, =S, -Eskkaij Eq. 12

1]

The fourth order stiffness and compliance tensfus,isotropic materials, are hence
defined respectively:

Cn = 31rg) OO RO o) O £q. 13
= /1(5” 5jk +0, 5jl )+/]5ij Oy

1+
Sia =2—EU(5” 5jk +3, le )_%5”' Oy Eq. 14

where  the  shear  modulus, (= E/2(1+U), and the Lamé’s

constantd = Ev / (1+ U)(l— 2U), are other alternative material parameters comynosed
to characterize the elastic behavior of polymersother material parameter usually found in
the Hooke’s generalized model is bulk modulkss E / 3(1— 2U).

Linear elastic model is unable to capture yieldigreover, it is possible to see in figure
la) that, in the linear region, the Young modukisemains nearly unchanged during
degradation. However, at large strains, the lirgastic model is able to fit reasonably well
the experimental monotonic tensile test resultsotAer limitation of this model is that it is
time-independent. Hence, it is unable to captueentiechanical behavior dependence on the
strain rate, as can be seen in figure 2a for theatomic tensile test at two different strain
rates (15 and 500 mm/min), when both experimergallts were used to calibrate the
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parameters of the model by inverse analyses.alssunable to capture hysteresis and plastic
strain accumulation, since the unloading pathésstmme of the reloading path (see figure 2b).
In this second case, unloading-reloading tensgts teesults were used to calibrate the model
parameters. On one hand, the linear elastic maddigis the same result independently from
the strain rate (see figure 2a). On the other hdmedloading and unloading paths coincide in
the same linear prediction. The calibration techaigsed to minimize the difference between
the experimental results and the model predictiears the Nelder-Mead method.
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Figure 2 —Experimental results of a) monotoniciteriest at two strain rates (500 and 15
mm/min) and b) cyclic tensile test of a biodegrdegdolymer (PLA-PCL), and prediction of
linear elastic model.

Calibration of the model was done based on the mooiotensile tests results (at 250
mm/min) at four degradation steps (0, 2, 4 and 8ks&g Considering that the Poisson’s ratio
v remains unchanged (0.4) during degradation, thstiel modulusE was determined by
calibration at each degradation step. Then estinahies were fitted by linear regression as
function of the degradation damadg,u). In the figure 3, it is possible to observe tta
elastic modulu& decreases nearly linear as function of the hytiomtlamage.
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Figure 3 —Evolution of the elastic modulagiuring hydrolytic degradation.

Based on this linear equation to estimate the ielasbdulus E(d), the mechanical
behavior of the polymer was predicted. The rearksshown in figure 4.
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Figure 4 — Experimental results of monotonic tengist at 250 mm/min of PLA-PCL fiber,

and model results via linear elastic model, aftez,@ and 8 weeks of hydrolytic degradation.

Hyper elastic constitutive models

Besides the linear elastic model, hyperelastic isodan be used to model the relaxed
state. Polymeric materials are known by their rinedr mechanical behavior. Hyperelastic
models are a class of constitutive relationshige sbmodel nonlinear elasticity. Mechanical
properties of hyperelastic materials are usualyasented in terms of a strain energy density
function W. Considering the one-dimensional representatiorhygierelastic models, the
constitutive relation is generically defined by:

o= aw Eg. 15
de

whereos ande are the stress and strain measured by the uniexisile test, wher@/ is
defined by:

W = [ofe)de Eq. 16

and represents the area below the stress-straie.cHyperelastic models should have
the ability to reproduce the ‘S’ shaped responseubber like materials (Chagnon et al.,
2004).

A general polynomial form usually found for theadtr energy density, assuming an
incompressible mechanical behavior, is defineeims of the strain invariants:
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wiii)=Yc, (1 -3) (1 -3) £q. 17

i,j=0

where| =A% + 2/ A is the first invariant andl =1/ A*> + 24 is the second invariant
andc; are material parameters.

In the case of hyperelastic models, generalizinthéothree-dimensional representation,
W is a scalar function of the deformation gradienThe rate of work done by stresses acting
on a small material element with volumi, in the undeformed solid may be defined as:

_OW _ow oF;

=F P,dV, Eq. 18
ot oF, ot U

Then, a generic form for a hyperelastic constitutiglation can be presented in terms of
the first Piola-Kirchhoff stress tenser

_aw

= Eq. 19
' oF,
or in terms of Cauchy stress ten3or
1_ oW
i = —F— Eq. 20
J aij

As referred previously for the one-dimensional niptlés constitutive relation is usually
defined in terms of the invariants of the left Cayireen deformation tens@ (see
definition in Appendix). The first, second and thinvariants are defined, respectively, as:

I, =tr(B, ) =By =+ R+ 2 Eq. 21
: :%h; BBy = AR+ A4 R Eq. 22
:|Bkk|:“]2 :/]ijgjg Eqg. 23

wherel;, i = 1, 2, 3 are the eigenvaluesFgfand also known as principal stretches. The
formulas for the strain energy function are gemgtpressed in terms of principal stretches:

wiia )= S a s )e a0 a)enbt - o) o)
i,jk=
Eq. 24
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where g; are material parameters, or in terms of the iawasi of the Cauchy-Green
deformation tensors:

W(l g gl g)= ZN‘icijk(lB -3)'(n,-3)' (I, -3) Eq. 25

where G, are material parameters. Many elastomeric anchpariiy materials are often

nearly incompressible. Hence, it is more convenienise an alternative set of invariants of
the deviatoric left Cauchy-Green tensor (i.e. netglg the volumetric part of the strain
tensor):

I, =371, Eq. 26

Iy =372 Eq. 27

Therefore, it is common to find the strain energgnsity function in the generic
polynomial form (Forni et al., 1999), in terms big alternative set of invariants:

M

W(E,E,J);i 6, (15 -3) (i1, -3 +>d,(3-2) Eq. 28

i,j k=0 i

wherec; are the material parameters related to distortdmgreasd, are the material
parameters related to volume change. Note thahéompressible materialsis equal to “1”.

Particular cases of this general polynomial forcmstderingW(I gl g ,J), are:
- the Neo-Hookean model, wharel, j=0 and N=M=1:

Wi 5115 .3)= oI5 —3)+d, (3 1) Eq. 20
Solving equation 20, the corresponding constitutétation results in:

— 2010
i~ 353

1
(Bij _gBkkJij j + 2d1(‘] _1)5ij Eg. 30

- the Mooney-Rivlin model, wherg&0, ¢;=0, and N=1:

Wi 5115 ,3) = ¢ (15 = 3)+ co (i1 -3)+d, (3 -1)° Eq. 31

The corresponding constitutive relation is:
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2
=28 (e, -5 )
Eq. 32

1

2col(|3kk|3 —[Bkk]25 -B, B 0t3

J7/3

Bkank5 j+ 2d1(‘] _1)5ij

where in these cases;2«x. The simplest hyperelastic model for elastomeratamals is
the Neo-Hookean model. It is a Gaussian statistiwdry model, because the strain energy
function was originally defined as:

~8(15-3)= " 2+ - =3

where the shear modulygsis a function of the chain density)( Boltzmann’s constant
(f) and temperatureT]. See Treloar (1975) for a more detailed descriptbriGaussian
statistics and the corresponding assumptions. @wtitier hand, the Mooney-Rivlin model is
an empirical model. Although it is one of the mtastorite models, its disadvantage is that
material parameters must be obtained by mechamgpkriments since they are not
physically consistent. Other sophisticated empirioaodels, variants of the generic
polynomial forms, such as Odgen model or Yeoh mamai be found in literature.

A good constitutive model should represent theetftienensional nature of the stress-
stretch behavior using a minimal number of paramset® represent physically the
deformation process. Ideally, the parameters shbal@btainable from a small number of
experiments, preferably only one (Arruda and Boy@&@93b). In this sense, Yeoh model is an
empirical simple model, applicable for a wider rarm deformation and is able to predict the
stress-strain behavior in different deformation e®dsuch as compression or shear) from
data gained in one simple deformation mode (suamascial extension)(Ghosh et al., 2003).
Other physical models are based on chains netwdeksribed by Gaussian statistics or
modified by the chain statistics to allow largeesthes than those afforded by the Gaussian
statistics assumption. They incorporated these Gamssian chains into networks of three,
four or an infinite number of chains (Wang and GU®52; Flory and Rehner, 1943; Treloar,
1946). These models have in common two physicallsed parameters, the shear modulus
(W) and a chain locking stretch, ) defined as the value of the chain stretch whenctiain
length reaches its fully extended state. Howevsgsa refereed models fail in the task of
describing the response of an elastomeric matendker different states of deformation
without changing the model parameters (Arruda amycB, 1993b). The Arruda-Boyce
model, also known as eight-chain model, is a stighied physical model able to predict the
stress-strain behavior in different deformation e®drom data gained in one simple
deformation mode. It can be considered an extensfothe Neo-Hookean model, which
considers non-linear Langevin chain statistics wtleriving the strain energy function. The
strain energy is assumed equal to the sum of tansenergies of the individual chains
randomly oriented in space, as defined below (Razul., 2005):
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W= yii(ﬁ -3 )+ d,(3-2) =

2i-2
=0

1— 1 [—2 11 [—s
= =\l.-3)+ (I —9)+—(| —27)+... +d, (J-1)°
ﬂ{z( B ) 20/1L B 105mL B l( )

Eq. 34

with the first five termsg for the Taylor expansion of an inverse Langevinction are

c1=1/2, ¢,=1/20, c3=11/1050, ¢,=19/7000,cs=519/673750. The corresponding constitutive
relation is:

U B 33B 1

Eq. 35

Although, hyperelastic models are non-linear theg anable to capture yielding.
However, at large strains, they are able to fisoeably well the experimental monotonic
tensile test results. Another limitation of thegpets of models is that they are not time-
dependent. Hence, similarly to the linear elastiodeh, they are unable to simulate the
mechanical behavior dependence on the strain &ate;an be seen in figure 5a for the
monotonic tensile test at two different strain sa{@d5 and 500 mm/min), when both
experimental results were used to calibrate tharpaters of the model by inverse analyses.
They are also unable to capture hysteresis antigp&isain accumulation, since the unloading
path is the same of the reloading path (see fighjeln this second case, unloading-reloading

tensile test results were used to calibrate the einpadrameters. The same calibration
technique was used.
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Figure 5 —Experimental results of a) monotonicitertest at two strain rates (500 and 15
mm/min) and b) cyclic tensile test of a biodegrddadwlymer (PLA-PCL), and prediction via
Arruda-Boyce model.

Calibration of the Arruda-Boyce model was done Hase the monotonic tensile tests
results (at 250 mm/min) at four degradation st€p2( 4 and 8 weeks). Considering that the
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material is nearly incompressible, therefore thék bnodulusx is constantly high (40000
MPa), and the locking stretcdh also remains constant, since the predicted reardt@lmost
insensitive for values close to 10. The shear maxiulvas determined by calibration at each
degradation step. Then, estimated values werdl fittelinear regression as function of the
degradation damagt#t,u). In the figure 6, it is possible to observe ttie shear modulys
decreases nearly linear as function of the hydmtiamage.

450.00
% ¢ Arruda-Boyce
400.00
&
[350.00
[]5-199.081,+422.84 o °
R2=0.868
300.00 : r . . : .
0.0 0.1 0.2 0.3 0.4 0.5 0.6
dy

Figure 6 —Evolution of the shear moduluduring hydrolytic degradation.

Based on the linear equation to estimate the elastdulusy (d), the mechanical
behavior of the polymer was predicted. The resartsshown in figure 7.
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Figure 7 — Experimental results of monotonic tentkst at 250 mm/min of PLA-PCL fiber,
and model results via Arruda-Boyce model, afte2,@} and 8 weeks of hydrolytic
degradation.

These previous examples using the linear elastit the hyperelastic Arruda-Boyce
models enable the modeling of biodegradable strestduring degradation. These methods
to predict the mechanical behavior during degradatire based on the same concept
developed in recent works (Soares, 2010; Vieiraalet 2011a) by assuming that the
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constitutive model parameters have been changemding to hydrolytic damage. In these
works other hyperelastic constitutive models, sastiNeo-Hookean and Mooney-Rivlin, are
used.

In another work (Vieira et al., 2011b), the Neo-Kean hyperelastic model was
implemented in ABAQUS through a User Material (UMASubroutine and PYTHON
language. This script is run by ABAQUS and the ddgtion time is required as an input
parameter data. The hydrolysis rate of the materiahd the strength of the non-degraded
materialoy are initially set. Then the script calculates tiyerolytic damagel, according to
equation 4 and the material strengthaccording to equation 3, was used in an impleatent
failure criterion in order to simulate a PLA-PClbér mechanical behavior until rupture in
different stages of degradation, where is given diegradation time. The script also
calculates the material parametgp as a linear function of the hydrolytic damade In
Vieira et al. (2011b), the load, or the stressdfislas assumed constant during hydrolytic
degradation, since the specimens degraded inss $tee state.

In the work of Soares et al. (2010), the rate gjrdéation depends on the deformation
gradientd(F) and implicity on both location and time. Theyfided the deformation-

dependent reaction rate using the first and segworatiants of the left Cauchy tensds,
that is:

ij

‘%:%(1-00[08 3P0, -3)f Eq. 36

where T, is the characteristic time of degradation. As egu®nce, inhomogeneous

deformations, occurring in the body, can cause $bate parts of it to degrade faster than
others. However, these hyperelastic models netilectime-dependent mechanical behavior.
As seen before, they are unable to predict relematnd creep.

Elastoplastic constitutive models

Elastoplastic models are commonly used to simutsemechanical behavior of metals,
including the yielding and hardening phenomenacdriain conditions, some features of the
mechanical behavior of polymers can also be siradlasing these types of models. One of
the classical models described in literature isiSdenant plastic model, which represents a
solid sliding over a surface with some frictionddegure 8). The yield stress is a material
parameter, which represents the value above yiglditherwise if this value is below, then
there is no strain.
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g, &£
Figure 8 -Rheological representation of the perfectly plastadel

According to the Boltzmann superposition princigstic and sliding elements can be
combined in series or in parallel. Regarding thisgiple, each loading step produces
independent contribution to total loading histong dhe total final deformation is the sum of
each contribution. Thus, it is possible to mode éhastic perfectly plastic model (Prandit-
Reuss model), represented in figure 9, where thetieland sliding elements are combined in
series.

£ o,
- ’ o
o 1_/\/\/\/\_]_‘:]_7_‘_
&, &,
— — [en
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&oE, T8, 7

s, & €

Figure 9 - Rheological representation of the etgstirfectly plastic model

It is also possible to combine elastic and slidetgments in parallel (see figure 10),
adding the linear isotropic hardening into the @&ty plastic model. The material parameter
H represents the hardening rate.

Figure 10 - Rheological representation of the linisatropic plastic model

Another classical example of a plastic model is plogver law isotropic hardening,
represented in figure 11.
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Figure 11-Rheological representation of the power law isdt@bastic model

To model the elastoplastic mechanical behavior ayrper and the permanent plastic
straine, accumulated after a load cycle, the bilinear efaastic model represented in figure
12 is also widely used. It results from the comborain series of linear isotropic plastic
model and a linear elastic model.

O').
Tl
Pl
5=£€+€p=—+(o;{g~") .
H = (O'—O')_) a, H
&g, .
8=8€:>(O'<O']) <
5:5[,:>(a>c7).) &r &

Figure 12-Rheological representation of the bilinear isotcoglastoplastic model
In these one-dimensional models, total strain candbcomposed in an elastic part,

recovered when the material is unloaded, and diplaeversible part, which remains after
unloading:

E=E +E, Eq. 37

For the generalization of this decomposition, i& tiase of three-dimensional constitutive
elastoplastic models, the general strain increnemonsidered. According to a Lagrange
description, this decomposition is defined as:

dE, =dE; +dE? Eq. 38
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The linear constitutive relation for the elasticqeh results:
dSij =C dE, Eg. 39

A vyield criterion must be established for the plagiart, to determine the critical stress
state required to cause permanent deformatiodeipalymer. The two most used criteria are
the von-Mises and the Tresca, defined respectlyghlheir yield surface:

f(T.j ,£p)= \/%[(al ~0,)} +(o,-0,) +(o, —03)2] -0, Eq. 40

f(T'J' "gp)= ma>{|a'l _02|1|Ul _03|'|02 _U3|}_Uy Eqg. 41

Considering the Cauchy stress tensor, whegre, e o3 are their eigenvalues, the criteria
are defined so that the material deforms elasyieatien f(T £p)< 0, and plastically when

ij*
(T,

ij?

£p)=0. Due to the yield criterion,f ('I'Il ,
space, it is referred to as a yield surface. Theseyielding criterion may be plotted in a
three-dimensional space, with the three principakses as axes (see figure 13).

g e Hydrostatic
Y Axis
O1=02=03=0m

Tresca Yield
Surface

Ep)=0, which defines a surface in stress

O014Von Mises

Yield Surface
Gl

Tresca
Yield Curve

Von Mises
Yield Curve

Deviatoric Plane
o1+ o+ 03=0

g2

Figure 13 - Yield surface according to Tresca and-Wlises criteria

The axis of these prisms, according to each aviteriorresponds to a hydrostatic stress
sate, where1=0,=03:=0,~=1/3(c1+0>+03). Hence, if the state of stress falls within thyéraler,
the actuating stress is below yield level and tlatenal shows elastic response. On the other
hand, if the state of stress lies on the surfacth@fprism, the material yields and deforms
plastically.

Alternatively, the von-Mises criterion can be exgzed directly in terms of the stress
tensor:

t e,)= ‘/gT'ij T, -0, Eq. 42
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considering that the stress tensor can be decomipose a volumetric stress tensor
related to volume changes during straining:

T”ij :%Tkkaij :a-mdij Eq 43

and a deviatoric stress tensor related to diststduring straining:

1
T, =T, _ETkkaij Eqg. 44

This yield criterion is based mainly on the expenital observation for metals, where
hydrostatic stresso{=0,=03=0,) can not cause yield. On other words, plastiforati
phenomenon is assumed to be an isochoric proeggeding von-Mises criterion.

If the plastic deformation causes strain hardeminthe material, the yield surface will
change during plastic strain evolution. Then theldyistressg,, determined from uniaxial
monotonic tests, may increase during plastic stesiolution, due to hardening, when the
polymer is reloaded. Hence, yield stress is a fanatf the plastic straisy(e;). Among all the
plastic constitutive models, the hardening law, aihdefines the evolution of the yield
surface, must be established. The two most comrmppnoaches are the isotropic and the
kinematic hardening models. In the case of theapdt hardening model, the yield surface
expands, but maintains the same shape. To getabkuscalar measure of plastic strain, the
accumulated plastic strain magnitude is defined:

&= %dE”PdE”F’ Eq. 45

Then it is possible to establish the functige,). The most common hardening function
are the perfectly plastic, the linear isotropicsfila and the power law isotropic plastic
models, discussed above, and defined respectisely a

g,=0y Eq. 46
0,=0,*Heg, Eq. 47
o,=0,+tH (&‘p)%“ Eq. 48

whereoy, is the initial yield stress. An isotropic hardemiiaw is generally not useful to
simulate the mechanical behavior of polymers, wiese are subjected to cyclic loading
around zero, as represented in figure 14. Isotrapimdels do not account for the
Bauschinger’s effect, and so predicts that affemacycles, the polymer will just harden until
it shows elastic response.
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o ¥

——  Isotropic hardening
= Kinematic hardening

Figure 14-Bauschinger’s effect prediction according to ispiccand kinematic hardening
models

The kinematic hardening law allows the yield sugfaéo translate, without changing its
shape. As the material is loaded in tension, tke&dysurface is displaced in the direction of
increasing stress, thus it is possible to simullagestrain hardening. However, this softens
the material in compression. Hence, the kinematiddning models are able to simulate
cyclic plastic deformation between tensile and caagion. These two different yield surface
evolutions during straining are graphically showriigure 15.

a) b)

Figure 15-Representation of yield surface changing duringtfaastrain evolution, according
to: a) isotropic hardening model; b) kinematic emidg model

To consider this translation of the yield surfaceitfout shape changes) during
hardening, the center of the yield surface is disgdl to positiom;; in stress space. Hence, the
von-Mises yield criterion needs to be modified @kfvs:

f(Tij ’5p)=\/§(T'ij —a )(T'ii _aii)_ay Eq. 49

In this case, yield stress is constant,dyga,o. Then, it is possible to relate the position of
the centre of the yield surface;, to the plastic strain history. As in the isotmpnodels,
there are different ways to do this. A simple apptois to set:
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do; = c% dEy Eq. 50

This hardening law, known as linear kinematic hanag, predicts that the stress-plastic
strain curve is a straight line with slope

Elastoplastic models are non-linear and able taulsita yielding. Furthermore, at large
strains, they are able to fit reasonably well tRpeeimental monotonic tensile test results.
However, these types of models are also time-imiigr®. Hence, they are unable to capture
the mechanical behavior dependence on the stregnaa can be seen in figure 16a for the
monotonic tensile test at two different strain sai@d5 and 500 mm/min), when both
experimental results were used to calibrate tharpaters of the model by inverse analyses.
They are also unable to simulate hysteresis, atheit enable to simulate the plastic strain
accumulation, since the unloading path is not #mesof the reloading path (see figure 16b).
In this second case, unloading-reloading tensge results were used to calibrate the model
parameters. The same calibration technique was. Usedsimulate this time dependent
phenomenon, other types of constitutive modelsexgaired.
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Figure 16 —Experimental results of a) monotonisilertest at two strain rates (500 and 15
mm/min) and b) cyclic tensile test of a biodegrddatolymer (PLA-PCL), and prediction via
linear isotropic hardening model.

Calibration of the linear isotropic model was ddresed on the monotonic tensile tests
results (at 250 mm/min) at four degradation st€p2(4 and 8 weeks). Considering that the
elastic region in not affected by degradation ahdrefore, the elastic modul&s and the
Poison’s ration remain constant during degradation (2300 MPa ahde@pectively), the
linear hardening ratéd was determined by calibration at each degradasiep. Then,
estimated values were fitted by linear regress®ofunction of the degradation damatfgu).

In the figure 17, it is possible to observe that limear hardening ratd decreases nearly
linear as function of the hydrolytic damage. Basedthis linear equation to estimate the
linear hardening parameteli(d), the mechanical behavior of the polymer was predicide
results are shown in figure 18.
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Figure 17 —Evolution of the linear hardening tdtduring hydrolytic degradation.
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Figure 18 — Experimental results of monotonic tertgist at 250 mm/min of PLA-PCL fiber,
and model results via linear isotropic hardeninglehoafter 0, 2, 4 and 8 weeks of hydrolytic
degradation.

Viscoelastic and viscoplastic constitutive models

The mechanical behavior of polymers, under larderdetions and dynamic loading at
varying strain rates, is a combination of elastsfitabehavior, typical of metals at low
temperature, and a viscous behavior typical ofdfuiln some cases, depending on the
polymer, service temperature, strain rate, etfferéint combinations of hyperelastic, plastic
and viscous models can be used to describe theinanécal behavior. In the case of viscous
models, the mechanical behavior is time dependentstrain is not only a function of stress,
but also depends on the load history. Unlike timsependent models discussed until this
subsection, viscoelastic models may be able tolaimareep and relaxation phenomena.

The simplest viscoelastic models consider a lirmanbination of springs (using the
Hooke’s law) and dashpots (using Newtonian dampén linear viscosity). The classical



24 André C. Vieira, Rui M. Guedes, Volnei Tita

examples of linear viscoelastic models are the Mdixand Kelvin—Voigt models, in which
spring and dashpots are organized in series aarallpl, respectively. The elastic component
is modeled using a single material paramEgtéy oung modulus) according to the equation
= E.e. Analogously, the dissipative component uses glesimaterial parameter (viscosity)
according to the equatiorry, de/dt=7)£ . The rheological representation of linear visca@as
models are presented in figure 19.
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Figure 19 — Rheological representation of lineaceelastic models: Maxwell (a) and
Kelvin—Voigt (b); and relaxation and creep respaniseach viscoelastic model, respectively

The Maxwell model is able to simulate stress rdiara i.e. the decay of stress at
constant stress. However, it is unable to simutaecreep behavior, i.e. the decay of strain at
constant stress. Regarding the Kelvin-Voigt moilék just the opposite. A combination of
these two models is the standard solid model, whigtsists of a linear spring and dashpot in
series (a Maxwell element), in parallel with a inespring (see figure 20).

Relaxation

Figure 20 — Rheological representation and relanatreep response of the standard
solid model

The differential equations for uniaxial constitaivrelations for these classical
viscoelastic models, the Maxwell, Kelvin-Voight astandard solid models, respectively, are:
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dgt —dﬂ+%—ﬂ+idas

— = Eg. 51
dt dt dt n E dt
_ _ deg
g, _Us+0d —E.£S +/7F Eqg. 52
g't+ldo-t:E2 g+ ﬁ % Eq. 53
E, dt EE, )dt

These classical approaches to model low rate, ésotl polymeric behavior in the
viscoelastic regime was used to formulate smadlirstdinear viscoelastic constitutive laws
(Ferry, 1980; Ward, 1979). These formulations eithitharacteristic polymeric behavior,
such as strain-rate dependence, creep and/or sttagation, but they are generally valid for
limited strain rate (and temperature) range.

Such a formulation is generally inadequate, asrpetg typically exhibit shear thinning,
i.e. the viscosity decreases with strain rate. Tayeraccurately model polymeric behavior
over a large range of strain rates, the viscosdy be taken to be a function of stress or strain
rate. As in the work of Bird et al. (1977), the cgsity can be made non-Newtonian by
selecting for the viscosity the function:

/7=/7m+( 5 =1.) Eq. 54

1+ (Cg)z )(1—n)/2

which simply serves to decrease the viscogitfrom its initial value/s}, for £=0 to
n.,as & - o and consequently provides for shear thinning. iReters¢ andn adjust the

rate /7 and approachy,, . This approach may be used to calibrate the nsodEdponse over a

larger strain rate range

For the generalizing to the three-dimensional acdgbese classical viscoelastic models,
(assuming isotropic materials) is also convenierddcompose the stress and strain tensor in
volumetric and deviatoric. Similarly to the Caudiyess tensor, the stretch rate tefiz@see
definition in Appendix) can be decomposed into tunwtric stretch rate tensor, related to
volume changes during straining:

, 1
D', =§Dkk5u Eq. 55

and a deviatoric stretch rate tensor, relatedd€twdions during straining:

D, =D, -1D,5

i Eq. 56

w
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Rewriting the Maxwell constitutive one-dimensionalelation, equation 51,
(o +10 =né)wherer =1 | E is the relaxation time in the tree-dimensionahfor

Tij +Tijkl Tij = Nijkl Dy Eq. 57

where 'i'ij = C:jk, D,, is the time derivative, known as the stress rake fourth order
tensors, which specify the material properties, theetime constant tensoil. fu) and the

viscosity tensor Nijkl ), defined for an isotropic material:

1 1
Ty =50, -1)0,8, 457,66, +0,,) Eq. 58

1 1
N =500 =74)8,04 + 54 (6.0, +6,0,) Eq. 59

Where 7, and 7, are respectively the volumetric part and the devi@ part of the

relaxation time tensor, angl, and/), are respectively the volumetric part and the devia

part of the viscosity tensor. Analogously to thes-@iimensional model, where =7/ E,
also the time constant tensor and the viscosityaieare not independent. Their relation is:

_ _1fn, _n 1n
Ti = NijmnSmni —g(Q_ija—u Oy +§2_;1(a|—k 0, +9, 5jk) Eq. 60

Sincer, =1, 13k and71, =1, | 214, where 4 and K are the viscoelastic shear and

bulk modules, respectively. The compliance four‘tlixe«otensmSijkl , for an isotropic material
is:
1( 1 1 11
Siu = 5(3_/( _Z_ﬂ]é-ij Oy +§2—,U (dk Jn +9, ij ) Eq. 61

It is a simpler calculation to separate volumedrid deviatoric responses to obtain:

L +TVT”ij =-n,0" Eq. 62
Ty +14T =140 Eq. 63
Additional Maxwell elements may be easily includedulting in the, commonly named,

generalized Maxwell model, which includes multipiéaxation processes.
In the case of the standard solid model, the coist relation has the form:
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Sij +Tijk| Sij = Ci?kl Eqt Tijmn (Cl + Crz;mkl)Ekl Eq. 64

mnkI

WhereSij = Cﬁkl E, = Cﬁkl F.Dy FIj .

The difference between viscoelasticity and visceqtay refers to constitutive theories
with two different deformation regimes, with andtlwaut strain accumulation. As discussed
previously, plastic deformation is a specific tygfd@nelastic deformation, only active when a
yield criterion is met. In the work of Bardenhagemn al (1997), the generalization to one-
dimensional viscoplasticity is made by replacing lihear spring in the standard solid model
with an 'elastic-plastic' spring (see Fig. 21).

Figure 21 — Rheological representation of the \ptesiic Bardenhagen model
(adapted from Bardenhagen et. al, 1997)

In the Bardenhagen model, total stress is decomposea viscoelastic part and an
elastoplastic part, i.eg =g, + g, . The constitutive relations for each part werafglsthed

in equations 47 and 51. The resulting predictiorstoéss relaxation process, of this one-
dimensional viscoplastic model, is depicted in feg22 a, where the material is strained at

constant rate until the straig,is reached in timef =t,, after which the strain is held
constant. The stress-time plot depicts the totekso , and the decomposed stresses, namely
the elasto-plastic parer, and the Maxwell viscoelastic pad,,. In figure 22 b, another
example illustrates the prediction of the strainorery obtained by using the viscoplastic
model. The material is strained at constant rat# the strain &, is reached in timé¢ =1,
after which the model is unloaded at constant et a free stress stateg =0 in time

t =t,. Finally, the strain decays under constant stess0, consequence of the Maxwell
element and elastic-plastic spring unload, resmlimthe creep recovery of the viscoelastic
strain asymptotically until a permanent str&ip. The stress-time plot depicts the total stress

0, and the decomposed stresses, namely the eléasieepspring g, and the Maxwell

viscoelastic componentr, .. As the material is unloaded, the elastic plasgiing unloads

with its initial modulus, while the viscoelasticests decays toward the asymptote vajde
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Figure 22 — Example of strain histories and comagjng stress-strain response of the
viscoplastic modeladapted from Bardenhagen et al., 1997)

Another common approach to model the viscoeladéistic behavior is to consider, as
Perzyna (1966), the total strain or the strain ratke sum of several components. Instead of
the stress decomposition here shown for the stdnstaiid model, these other approaches
consider the strain (or strain-rate) decomposititio elastic and inelastic (or viscoplastic)
components acting in series (see the rheologipaésentation in figure 23):

E=E,*TE, Eq. 65

The constitutive relation for the elastic pait is the Hooke's law, which establishes a
linear relation between stress and straing/E. For the viscoplastic component, the viscous
and the plastic strain is the same, kg~ ¢,= ¢p. Furthermore, total viscoplastic stress can be
decomposed into viscous and plastier, stresses:

=g +0. = dEV” + Eqg. 66
va_av UP—OT Uy g.
Then:

g,<0,=¢&,=0 £q. 67
O,>0,=>&,=€,

However, this simple model is unable to simulate thscoelastic behavior below
yielding.
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Figure 23 — Rheological representation of the \p&astic Perzyna model.

More complex variants of these simple models cafobed at the literature (Arruda and
Boyce, 1993b; Bardenhagen et al., 1997; Bergstittah,2002; Boyce et al., 1988; Dafalias,
1991; Drozdov and Gupta, 2003; Fancello et al. 626{arren, 1995; Hasan and Boyce, 1995;
Hausler and Sayir, 1995; Holzapfel, 1996; Johndai. £1995; Lubarda et al., 2003; O'Dowd
and Knauss, 1995; Reese and Govindjee, 1998; Ru88Y; Zdunek, 1993). Those models
can simulate the non linear viscoelastic, viscdgaand hysteretic response of polymers. In
fact, they are based on the same concept of netwadmbining elastic, sliding and
dissipative elements, in order to simulate the ttfapendent response of the material, based
on the Boltzmann superposition principle. Generallynore complex model is more precise
to simulate the mechanical behavior. On the otlamdhalso the inverse parameterization is
more complex, since additional mechanical test rezeded to identify all the material
parameters (monotonic tests at different rateslicGycreep and relaxation tests, etc). The
selection of an adequate model depends on theaiomineeds. If the aim is to simulate the
mechanical behavior of biodegradable polymers at lkdeformations and a specific
deformation rate, the linear elastic or the Neodéomodel is accurate enough. However, if
the aim is to study the mechanical behavior at maidedeformation in a small range of
deformation rates, the best choice is a linearodgkstic model, considering hyperelastic
constitutive relations for the spring elements. §hitithe aim is to simulate the mechanical
behavior of the biodegradable polymer submitted @eneric load spectrum, considering a
large range of deformation rates and large defaoomsit a more complex viscoelastic or
viscoplastic model is needed.

The Bergstrom-Boyce model (Bergstrém and Boyce,81998 a viscoelastic model,
which simulates the performance of polymers undargdarge deformations. It can be
calibrated through a relative small set of simpkxhanical tests, such as uniaxial loading, to
provide accurate predictions for different loadiogses (Bergstrom et al., 2002). These
comprise monotonic loading under different stra@tes, including hysteresis effect, and
unloading-reloading cycles at different strain levéBergstrom et al.,, 2002). In this
constitutive model, the mechanical behavior is dgmosed into two parts: a time-
independent response, modeled by a hyperelastatitdive model (defined as Network A),
and a time-dependent deviation from equilibriumaxet configuration, defined by an
inelastic constitutive model (defined as Network &) shown by figure 24. In fact, the
Network B is composed of an elastic element (alsnleted by a hyperelastic constitutive
model) in series with a time-dependent element,clvkacts to relieve the strain of the
Network A in function of the time. According to théaeological representation of the
constitutive model, shown in figure 24, the matebahavior is modeled as two polymer
networks acting in parallel (Bergstrém and Boy@98).
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Figure 24 — Rheological representation adapted Bengstrém and Boyce (1998).

Since deformation in Network A is the same of Nekv®, then F=F,=Fg. The
deformation gradient in Network B can be furthecataposed into an inelastic deformation
followed by an elastic deformation g&F°:F's), where the inelastic deformation represents
the configuration obtained by a complete virtualsit unloading of Network B until a stress
free state. The stress response of Network A isrgby the Arruda-Boyce model (Arruda and
Boyce, 1993b). A different form of equation 35 is:

i LR A
! J/]_* L _1(1//]L)

B +(J -1)5, Eq. 68

whereu is the shear modulus,is the bulk modulus, and is the limiting chain stretch.

L£7Y(x) is the inverse Langevin function, whet&x)=[coth(x) — 1/x]. /]_ is the applied chain
stretch, which can be calculated from:

/]—*_ trBT]
-\ 3

Eq. 69

where B=J?B= J?°FF". The stress on Network B is also given by the tebfiain
model:
L YA TA) o
8- H_ _( s (A ) g- +x(J -1)3, Eq. 70
] e ye* L 1(1/A ) ] 1
Je s L

where s is a dimensionless material parameter, which fipsecthe shear modulus of

Network B relative to Network A, andeB* is the chain stretch in the elastic part of Networ
B. Using this representation, the total Cauchyssttensor is given By=T o+Tg.

The velocity gradient in Network H, ; = I':BFB_1 (see definition in Appendix), and the
deformation gradient in Network B can be decompastrielastic and inelastic components
(F, =FSFL). Hence:
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L = [& (FsFs )}(FsF; ) =[Eors + FeEL IR () =

=FFs) +roralRe) e =L+ ReLG(RE) T =+ T

Eq. 71

where the velocity gradiet can be decomposed into the sum of stretch ratespind
tensorspD andW, respectively:

L, =FL(FL)" =D + W, Eq. 72
L', =D} + W, Eq. 73

The unloading process, which relates the deformat# svith the intermediate relaxed
state, is not uniquely defined; since an arbitrégid body rotation of the intermediate state
still leaves the state stress free (Bergstrom.ef@D2). To ensure the unloading unique, the
viscous spin tensor is prescribed zero, V—@ = 0, according to the researchers (Bergstrom

and Boyce, 1998; Bergstrom et al., 2002). The ohtgscoplastic deformation of Network B
is constitutively prescribed by:

'y =D% =, T—TB =refL(FL ) (Fe)™ Eq. 74

where T = 1/trlT'B T'Bl is the effective stress, which drives the viscihoiw. The time

derivative of Ff, can be derived as follows:

—j . e -1 TI e i
I:B = yB(FB) TBFBFB Eqg. 75

The effective creep rate-equation for viscous fisvgiven by the literature (Bergstrém
and Boyce, 1998; Bergstrom et al., 2002):

Ve :Vo(/TB-“E)C[L—?MT Eq. 76

base

where y0=1(§1) is a constant introduced to ensure dimensionasistency.T. . is a cut-

cut

off stress such that no flow will occur for valles/er than the cut-off stress ., represents

the flow resistancemis a positive stress exponentidl.is a strain adjustment factor, a@ds

a strain exponential constant, which is restrietethe interval [-1, O]. The chain stretch in the
inelastic part of Network B is given by Bergstromdaoyce (1998):
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i iT.
A :J” FBgFB Eq. 77

In the figure 25, it is possible to observe that ¢évaluated viscoplastic model was able to
simulate the time-dependent response of the polyimehis range of strain rates (500
mm/min and 15 mm/min). By using these two loadimges in the inverse analyses, the
coefficient of determination Rvas very close to 1(one), meaning that the moael able to
predict very accurately the mechanical behavighefpolymer at different strain rates. In the
figure 25, it is verified that the evaluated vislasgtic model was also able to simulate the
hysteric effect, commonly observed in polymers. i&jng cyclic unloading-reloading and
monotonic loading cases in the inverse analysescakfficient of determination®Rvas still
very close to 1(one).
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Figure 25 — Experimental results of a) monotonnsile test at two strain rates (500 and 15
mm/min) and b) cyclic tensile test of a biodegrddadwlymer (PLA-PCL), and prediction via
Bergstrom-Boyce model (adapted from Vieira et2al4).

In a recent study (Muliana and Rajagopal, 2012)pa linear viscoelastic model was
used to model the time-dependent performance afelgi@dable structures. In that work, the
authors considered that hydrolytic damage depeaotisdn the deviatoric strain tensor and on
the concentration of water. Hence, at each timeeinent step, damage must be calculated in
the material point. First water concentration athematerial point is updated based on Fick’'s
law. Then the hydrolytic damage is updated as foncof the deviatoric strain tensor.
Finally, the constitutive relation is updated atfeéime increment step. This method enables
to model the relaxation behavior (or creep) dudegradation, and it is reasonably good to
model moderate deformations. Later, Khan and EEkB8ay(2013) developed a
phenomenological constitutive viscoelastic-plastiodel able to predict the response of
biodegradable polymers under large deformationg Miodel consists of nonlinear elastic
spring acting in parallel with a variable number Maxwell elements. The hyperelastic
response of the springs both in the elastic bramchin the Maxwell branch is governed by
the Ogden-type free energy function. More receMligjra et al. (2014) used the Bergstrom-
Boyce model in a similar approach, where some efritaterial parameter depends on the
degradation damage. Since this constitutive modsl %h material parameters, a parametric
study was preformed to evaluate the most sengiwameters. The shear moduluand the
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flow resistancer,,sc are the most sensitive parameters, while the gtediiresults are almost
insensible to deviations of 10% of the other patense After determining the two most
sensitive parameters at each degradation stepybeyfitted by linear regression as function
of the degradation damaglét,u), while the other parameters were set constaringluhe
hydrolytic degradation process, assuming averagides identified from the different
hydrolytic degradation steps. It was observed thatshear modulus decreases nearly linear
as function of the hydrolytic damage. This samedn@as also shown in this chapter and was
also reported in a previous work (Vieira et al.128), where the neo-Hookean, Mooney-
Rivlin and second reduced hyperelastic models wsegl to predict the mechanical behavior
of the same biodegradable polymer. Muliana andd®gjal (2012) also assumed in their own
viscoelastic model that shear modulus decreaséshyirolytic degradation, i.e. hydrolytic
degradation process softens the polymers. On ther tiand, Soares (2008) reported that the
material becomes less viscous during hydrolyticraégtion, and returns faster to a relaxed
state. This assumption is also consistent to tkaltsefound in the work of Vieira et al.
(2014), where the flow resistanegscincreases nearly linearly with the hydrolytic dama
Based on these linear equations (see figure 2@),stitear modulugi(d) and the flow
resistancey,s{d), with other material model parameters valuesipisly set constant during
hydrolytic degradation, the mechanical behaviothe polymer was predicted at different
degradation steps. In the figure 27, the experiedgesults are compared against predictions
using this method.
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Figure 26 — Evolution of the material parameterthefBergtrom-Boyce model, shear
modulusp and flow resistancg,se during hydrolytic degradation.

This type of approach allows the four-dimensionabeling, where the fourth dimension
is the time. However, the characteristic time ajrdelation is different from the characteristic
viscoelastic time for stress relaxation or creéphé material has viscoelastic attributes, then
the degradation time-dependent phenomenon coupltbstie time-dependent mechanical
behavior of the material. Stretching induces strefexation with time by means of viscous
flow of the material, and in parallel, it inducekemical scissions of the molecules that
provide an additive pathway for relaxation. Hendea stress field is applied during
degradation, a five-dimensional modeling shoulddresidered.
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Figure 27 — Experimental results of monotonic fersist at 250 mm/min of PLA-PCL fiber,
and model results via viscoplastic Bergstrom-Bayaelel,
after 0, 2, 4 and 8 weeks of hydrolytic degradation

CONCLUSIONS

Biodegradable polymers, as conventional polymeeskawown by their non-linear and
time-dependent mechanical behavior, as shown byexberimental results. The presented
methods, for which some material parameters (thst sensitive) depend on the degradation
damage, enable the simulation of the mechanicahweh during hydrolytic degradation.
Depending on the simulation needs, different modeleh as linear elastic, hyperelastic,
elastoplastic, viscoelastic and viscoplastic) wiififierent degrees of complexity may be used
to predict the three-dimensional mechanical behlawfobiodegradable polymers at each
degradation step. These constitutive models camplemented in commercial finite element
software applied to complicated numerical modelSIh applications. Hence, this type of
approach can provide new insights to the designdiménsioning of biodegradable devices,
such as scaffolds, according to mechanical andbdityarequirements. Furthermore, it
enables the pre-validation of functional compaitipibf biodegradable implantable medical
devices.
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APPENDI X

Description of shape changesin solids

An external force applied to solid results in apthsement, which can be divided into
two components:

» A rrigid-body displacement: in this case, the tigtadisplacement between particles
is zero, i.e. the shape and size of the body doeshange.

» A deformation: in this case, there is a relatligplacement between patrticles, i.e. the
shape is changed.

For materials undergoing large deformations, suchaymers, finite strain theory must
be applied. In this section of the Appendix, theiaizs mathematical formulas, which are
used to characterize shape changes in solidshavens

Let X; denotes the components of a Cartesian vectorjfgpgca material point in the
reference configuration. Ther(X;,t) denotes the same material point in the deformed
configuration, and represents the position of tigterial point at timé

Hence, the displacement vectoy,is defined as:

x, =X, +u, (X, t) Eq. Al

and the displacement gradient (in the Lagrangeaoriition) is a second order tensor
defined as:

U, _ou Eq. A2
oX.

Then the deformation gradieRt in the so-called Lagragian description (i.e. posiin
the deformed configuration depends on the positibthe same material point in a fixed
referential coordinates), is a second order tedsfined by:

ox.
|:ij =0 Eq. A3
oX,
and the deformation gradient can also be exprezsed
ou,
Fij=|+U:5ij+ : Eq. A4
oX

J

wherel is the identity tensor, with components describgthe Kronecker delta symbol:

o %]
5{ '# £q. AS
1, i=]
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The other description for motion is made in termhshe current coordinates, called the
Eulerian description. The difference between these descriptions is that, in the Eulerian
description, one places the coordinate system enstilid as it moves, while in the
Lagrangian description, the motion of the solidiéscribed from a fixed coordinate system.
The inverse of the deformation gradient, or theodwftion gradient, in the Eulerian
description, arises in many calculations.

4 _ 0X,
- Eq. A6
0X
The Jacobian is defined as the determinant of dfierchation gradient:
dv
J:|Fij|:_ Eq. A7
dV,

and it is a measure of the volume change produged @ieformation, wher¥ is the
current volume andV, is the initial volume. Hence, for any physicalldnaissible
deformation, the volume of the deformed elementtrhagositive (i.eJ > 0). If a material is
incompressible, its volume remains constant Ji4).

The Lagrangian strain tensor is measured with mgjeethe initial configuration (i.e.,
Lagrangian description) and it is another way tectibe the shape change of a solid. It is
defined as:

E; :%(Fkiij_J"):%(FT'F_I) Eq. A8

ij ij

Thus, becauseF”. :5”_ +y the relationship between Lagrangian strain and

I
displacement is given by:

_ 1 ou; Ou; Qu, du,
== +—+
17200, aX,  oX, oX,

Eq. A9

The Eulerian strain tensor is measured with respecthe deformed or current
configuration (i.e. Eulerian description). It isfided as:

.1 g a)_ 1 4 e—a)\_1(0u,  0u; Qdu, du
R RalS CRLOSLL S

2{0x; 0x; 0x; OX,

There are two other deformation tensors, whichoften encountered in the finite strain
theory. The right and left Cauchy-Green deformat&msors, which are respectively defined

by:
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cij = Fkiij =F'F Eq. A1l
B, =FyFyx = FFT Eq. Al2

Other important second order tensors, which arel tsedescribe the shape change in
solids, the right stretch tensor, the left stretmisor and the rotation tensor are respectively
defined by:

U; =C;2 = (Fki Fy )E Eq. Al3
Vij = BijE = (Fik ij )E Eq. Al4
R, =F Uy "= Vi _lej Eq. A15

Hence, the multiplicative decomposition of the defation gradient can be regarded as a
sequence of two homogeneous deformations, steefollowed by a rigid rotatiofR:

F, =R, U, Eq. A16

Similarly, the deformation gradient can be regarded sequence a rotatiBrfollowed
by of stretchv:

F, = Vi Ry Eq. AL7

It important to retain thaR orthogonal RT.R =R.R" =1), therefore, represents a
rotation (R| = 1).

The principal stretcheg,, 1, and 3 are the eigenvalues & U or V, or they are the
square root of the eigenvalues ©fand B. Hence, there are two sets of principal stretch
directions. The principal stretch directions asstmt to the reference configuration are the
eigenvectors o) andC. On the other hand, the principal stretch dirextiassociated to the
current configuration are the eigenvector&/aindB. The relation between these two sets of

principal directions is the rotation tendor
The velocity is a vector that describes the ratgasition changes of the material points:

! (X,t) _0x, (X,t)

i Eq. A18
ot ot

And the velocity gradient (in the Lagrangean dexitm) is a second order tensor defined
as:

_ oV,

o= Eqg. A19
bo0X, a

The velocity gradient can be expressed in terntheideformation gradient and its time
derivative as:
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Ly = Fik Fk,-_l =FF™* Eg. A20
The stretch rate and the spin second order teasermdefined, respectively, as:

D, =(L, +L,)/2=[L+L7)/2 Eq. A21
w, =L, -L,)r2=L-L")/2 Eq. A22

Hence, velocity gradient can be decomposed intestihe of stretch rate and spin, as:
L; =D; +W, Eg. A23

The rate of deformation tensor can be relatedne tilerivatives of other strain measures.

For example, the time derivative of the Lagrangeistensor can be shown to be:

E, =F.,DyF, =F'DF Eq. A24

Description of internal forcesin a solid

Stress is a measure of the average amount of fxeged per unit area and it is a

reaction to external forces on a surface of a bdde stress vector at a material point
represents the fordg acting on the surface per unit afea

t = ﬁ Eqg. A25
dA

The resultant force acting on any port®of the surface of the deformed solid is:
F :ItadA Eq. A26
S

To elaborate further on this concept, consider allsoube in the body as depicted in

figure Al.
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Figure Al — Elementary cube representing the stessor

Let the stress vector that acts on the surtigebets, where g = (0, 0, 1) is the normal unit
vector.t; may be decomposed into three components in thetidineof the coordinate axes
and denote them Bs;, Ta, andTsa. Similarly, it is possible to consider surfad®; anddA,
perpendicular to 1 and 2, the stress vectors actinthent,, t,, and their components in the
1, 2 and 3 directions. The compon€nts T,, andTs; are called normal stresses, dhe T,
T»1, T2z Ta1 andTs, are called shear stresses. Then, the Cauchy s#ress is defined by:

t, Ty Ty T
Ty =1t =Ty Ty Ty Eq. A27
ty To T Ty

Cauchy stress tensor relates forces in the cufirentdeformed) configuration to areas in
the current configuration. Hence, sometimes thecBastress tensor is also called the true
stress tensor. It completely characterizes theriatforces acting in a deformed solid. In
addition, the Cauchy stress tensor is symmetridctwis implied from the fact that the
equilibrium of an element requires that the restiltaoment vanish.

Other definitions of stress often appear in cousté equations. The first Piola-
Kirchhoff stress tensor relates forces in the airmonfiguration with areas in the initial
configuration. In general, the first Piola-Kirchhaoftress tensor is not symmetric. The
transpose of the first Piola-Kirchhoff stress terisalso called the nominal stress tensor. The
relationship between the first Piola-Kirchhoff ssd¢ensoP; and the Cauchy stress ten$pr
is given by:

P, =JT,F, " =|FTFT Eq. A28
The Kirchhoff stress refers to a weighted Cauchgssttensor and it is defined by:

K, =JT; :|F|.T Eg. A29
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Finally, the second Piola-Kirchhoff stress tensdates forces in the initial configuration
to areas in the initial configuration. The relasbip between the second Piola-Kirchhoff
stress tensor S and the Cauchy stress teps®given by:

S, =JFTF,  =|F[FTTFT Eq. A30

The stress measures are work-conjugate to partistilin measures. This means that the
rate of work done by the forces can be calculated btress measure multiplied by the time
derivative of the conjugated strain measure. The o& work done by stresses acting on a
small material element with volum@y, in the undeformed solid (and voluni®/ in the
deformed solid) can be computed as:

W =D, T,dV =D,K dV, =F, P,dV, =E; S, dV, Eq. A31



