433 research outputs found

    Morphology systems for databases on buildings with curved façades

    Get PDF
    Buildings are emerging with an increasing degree of geometrical variation. As yetno scheme categorises data on the basis of non-orthogonal geometries applied. Theauthor proposes an easily accessible morphological scheme which for example,enables data to be retrieved on sustainable performance of glass types as related tothe distinctive building shapes. The scheme focuses on high-rises; in a later versionbuildings with less prominent vertical character will be included. The shaping ofmost non-orthogonal buildings is related to developments in modeling software.The morphological scheme is based on software manipulations to describe shaping,not on mathematical formulae. As software develops, new ways of form generatingand new shapes emerge. In consequence the shaping scheme gradually will beupdated. The scheme can be made accessible both in printed version byillustrations, as in digitised form, for example by keywords. The scheme isillustrated by examples of overall shaping. Trends in the applications of types ofcurved glass are briefly discussed

    Portrait of a Girl

    Get PDF
    None provided

    Identification and Analysis of the Domain Required for Trans-Acceleration Kinetics in the Human Glucose Transporter GLUT1: A Dissertation

    Get PDF
    Since the initial characterization of the human glucose transporter GLUT1, it has been observed that the presence of intracellular sugar stimulates the unidirectional rate of sugar uptake by a kinetic phenomenon known as trans-acceleration. Both GLUTs 1 and 3 catalyze transacceleration, while both GLUTs 2 and 4 do not. Although the basis for trans-acceleration is unknown, potential explanations include the requirement of a modulating cofactor, cellular context, or that the behavior is an artifact of imperfect transport measurements. This thesis examines whether trans-acceleration is a sequence-specific property intrinsic to the transporter. A method for detecting trans-acceleration in mammalian cells at physiologic temperature was developed through transport of two different glucose analogs. Homology-scanning mutagenesis was employed to exchange transmembrane domains (TMs) of GLUTs 1 and 4, and thereby test for accelerated-exchange loss- or gain-of-function. This approach was extended to GLUTs 2 and 3. The catalytic rates of these chimeric proteins were determined through transport measurements and expression measured by cell-surface biotinylation. These studies show that the sequence of putative scaffolding domain TM6 is both necessary and sufficient for trans-acceleration in scaffolds of GLUT1, GLUT2, and GLUT4. The substitution of TM6 sequence between these transporters has no effect on the turnover under exchange conditions, yet profoundly modifies turnover in the absence of intracellular sugar. We propose that the sequence-specific interaction of TM6 with other TMs structurally restrains relaxation of the empty carrier in GLUTs which catalyze trans-acceleration, and that binding of intracellular sugar affects these interactions to reduce the overall duration of the transport cycle. In addition, our model suggests that the substrate binding constant and rate of carrier relaxation are inter-dependent. In this model, the dissociation constant determined by substrate binding and dissociation rates at the endofacial sugar binding site must be larger than the equivalent constant at the exofacial site in order for trans-acceleration to occur

    WORKAROUNDS IN RETAIL WORK SYSTEMS: PREVENT, REDESIGN, ADOPT OR IGNORE?

    Get PDF
    We conducted a case study in a Dutch supermarket chain in order to explore the emergence of workarounds in the retail environment. We studied what types of workarounds occur during the use of retail information systems and how manager can handle the identified workarounds once they become aware of them. The data was acquired qualitatively through interviews, observations, and document analysis, and validated by means of an online survey. After identifying and classifying 29 workarounds, a conceptual framework was developed that links workaround features to workaround categories and then to certain actions as response to them, namely prevent, redesign, adopt and ignore. This study contributes to existing research by categorizing workarounds in an unexplored domain and developing a conceptual framework of workaround categories and re-sponses. We were able to identify patterns of relationships between types of workarounds, some of them similar to those found for other industries and others that appear to be specific to retail work systems, probably due to the inherent characteristics of retail work systems

    hA molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization

    Get PDF
    Aberrant protein oligomerization is an important pathogenetic process in vivo. In Alzheimer's disease (AD), the amyloid beta-protein (Abeta) forms neurotoxic oligomers. The predominant in vivo Abeta alloforms, Abeta40 and Abeta42, have distinct oligomerization pathways. Abeta42 monomers oligomerize into pentamer/hexamer units (paranuclei) which self-associate to form larger oligomers. Abeta40 does not form these paranuclei, a fact which may explain the particularly strong linkage of Abeta42 with AD. Here, we sought to determine the structural elements controlling paranucleus formation as a first step toward the development of strategies for treating AD. Because oxidation of Met(35) is associated with altered Abeta assembly, we examined the role of Met(35) in controlling Abeta oligomerization. Oxidation of Met(35) in Abeta42 blocked paranucleus formation and produced oligomers indistinguishable in size and morphology from those produced by Abeta40. Systematic structural alterations of the C(gamma)(35)-substituent group revealed that its electronic nature, rather than its size (van der Waals volume), was the factor controlling oligomerization pathway choice. Preventing assembly of toxic Abeta42 paranuclei through selective oxidation of Met(35) thus represents a potential therapeutic approach for AD

    Critical Roles of Two Hydrophobic Residues within Human Glucose Transporter 9 (hSLC2A9) in Substrate Selectivity and Urate Transport

    Get PDF
    High blood urate levels (hyperuricemia) have been found to be a significant risk factor for cardiovascular diseases and inflammatory arthritis, such as hypertension and gout. Human glucose transporter 9 (hSLC2A9) is an essential protein that mainly regulates urate/hexose homeostasis in human kidney and liver. hSLC2A9 is a high affinity-low capacity hexose transporter and a high capacity urate transporter. Our previous studies identified a single hydrophobic residue in trans-membrane domain 7 of class II glucose transporters as a determinant of fructose transport. A mutation of isoleucine 335 to valine (I355V) in hSLC2A9 can reduce fructose transport while not affecting glucose fluxes. This current study demonstrates that the I335V mutant transports urate similarly to the wild type hSLC2A9; however, Ile-335 is necessary for urate/fructose trans-acceleration exchange to occur. Furthermore, Trp-110 is a critical site for urate transport. Two structural models of the class II glucose transporters, hSLC2A9 and hSLC2A5, based on the crystal structure of hSLC2A1 (GLUT1), reveal that Ile-335 (or the homologous Ile-296 in hSLC2A5) is a key component for protein conformational changes when the protein translocates substrates. The hSLC2A9 model also predicted that Trp-110 is a crucial site that could directly interact with urate during transport. Together, these studies confirm that hSLC2A9 transports both urate and fructose, but it interacts with them in different ways. Therefore, this study advances our understanding of how hSLC2A9 mediates urate and fructose transport, providing further information for developing pharmacological agents to treat hyperuricemia and related diseases, such as gout, hypertension, and diabetes

    Predictions versus high-throughput experiments in T-cell epitope discovery: competition or synergy?

    Get PDF
    Prediction methods as well as experimental methods for T-cell epitope discovery have developed significantly in recent years. High-throughput experimental methods have made it possible to perform full-length protein scans for epitopes restricted to a limited number of MHC alleles. The high costs and limitations regarding the number of proteins and MHC alleles that are feasibly handled by such experimental methods have made in silico prediction models of high interest. MHC binding prediction methods are today of a very high quality and can predict MHC binding peptides with high accuracy. This is possible for a large range of MHC alleles and relevant length of binding peptides. The predictions can easily be performed for complete proteomes of any size. Prediction methods are still, however, dependent on good experimental methods for validation, and should merely be used as a guide for rational epitope discovery. We expect prediction methods as well as experimental validation methods to continue to develop and that we will soon see clinical trials of products whose development has been guided by prediction methods

    Rosetta FunFolDes - A general framework for the computational design of functional proteins

    Get PDF
    The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are "designable", meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the "designability" of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins-Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo "functionless" fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis
    • 

    corecore