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ABSTRACT

 Since the initial characterization of the human glucose transporter GLUT1, it has been 

observed that the presence of intracellular sugar stimulates the unidirectional rate of sugar uptake 

by a kinetic phenomenon known as trans-acceleration. Both GLUTs 1 and 3 catalyze trans-

acceleration, while both GLUTs 2 and 4 do not. Although the basis for trans-acceleration is 

unknown, potential explanations include the requirement of a modulating cofactor, cellular 

context, or that the behavior is an artifact of imperfect transport measurements. This thesis 

examines whether trans-acceleration is a sequence-specific property intrinsic to the transporter. A 

method for detecting trans-acceleration in mammalian cells at physiologic temperature was 

developed through transport of two different glucose analogs. Homology-scanning mutagenesis 

was employed to exchange transmembrane domains (TMs) of GLUTs 1 and 4, and thereby test 

for accelerated-exchange loss- or gain-of-function. This approach was extended to GLUTs 2 and 

3. The catalytic rates of these chimeric proteins were determined through transport measurements 

and expression measured by cell-surface biotinylation. These studies show that the sequence of 

putative scaffolding domain TM6 is both necessary and sufficient for trans-acceleration in 

scaffolds of GLUT1, GLUT2, and GLUT4. The substitution of TM6 sequence between these 

transporters has no effect on the turnover under exchange conditions, yet profoundly modifies 

turnover in the absence of intracellular sugar. We propose that the sequence-specific interaction of 

TM6 with other TMs structurally restrains relaxation of the empty carrier in GLUTs which 

catalyze trans-acceleration, and that binding of intracellular sugar affects these interactions to 

reduce the overall duration of the transport cycle. In addition, our model suggests that the 

substrate binding constant and rate of carrier relaxation are inter-dependent. In this model, the 

dissociation constant determined by substrate binding and dissociation rates at the endofacial 

sugar binding site must be larger than the equivalent constant at the exofacial site in order for 

trans-acceleration to occur. 
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CHAPTER I

Introduction and Literature Review

Metabolism and Homeostasis

 One of the most basic needs of all life forms is energy in the form of ATP. This 

energy is required for nearly all life-sustaining functions including growth, movement, 

and catabolic and anabolic processes. The generation of ATP is the result of a breakdown 

of nutrients derived from a variety of sources, particularly from dietary intake. At the 

cellular level, some of the simplest inputs for processes to generate ATP are 

monosaccharides, or sugars. Fructose and glucose are the predominant dietary sugars in 

mammals. Overall carbohydrate homeostasis reflects a balance between sugar import, 

utilization, synthesis, secretion and excretion.

Glucose is rapidly converted into ATP by both aerobic and anaerobic pathways. 

This energy may be consumed immediately or stored for later use, in the form of 

glycogen or triglycerides. When external sugar is unavailable, these complex 

carbohydrate and lipid stores can be used to generate glucose through gluconeogenesis. 

A host of environmental factors, including the supply and demand of glucose, impact the 

utilization of aerobic or anaerobic metabolic pathways in the cells and tissues within the 

body. Therefore, glucose homeostasis is an essential cellular and organismal function and 

involves a complex interplay of metabolic, hormonal, and neural pathways.
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Just as there must be a balance between the consumption, metabolism, and supply 

of nutrients in the body, there must also be a balance between the uptake, reabsorption, 

and output of glucose and other metabolites in the blood, brain, and various organs. This 

is achieved by a diverse set of transporters, mainly the facilitative glucose transporters 

(GLUTs), sodium-linked glucose transporters (SGLTs), and monocarboxylate transporters 

(MCTs), of which the GLUTs and MCTs are part of the Major Facilitator Superfamily 

(MFS).

Integral Membrane Transporters

 While small, non-polar solutes may enter the cell by simple diffusion across the 

plasma membrane, larger or charged molecules require membrane-spanning proteins, 

such as pores, ion channels, or transporters, to gain entry into the cell. This may be 

achieved through passive transport, also known as facilitated diffusion, whereby 

molecules flow down their concentration gradient across the plasma membrane. In 

contrast, molecules may be moved against their concentration gradient through active 

transport. Primary active transport requires the input of ATP, while secondary active 

transport requires the presence of an electrochemical gradient. This allows a molecule to 

be transported against its concentration gradient when it is coupled to the transport of 

another molecule down its concentration gradient. This can occur with both molecules 

moving in the same direction (co-transport or symport) or in opposite directions 

(exchange or antiport). 
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 Transporters appear to differ fundamentally from ion channels or pores in that 

they must undergo a conformational change in order to translocate substrate across the 

plasma membrane. This occurs after substrate binding at a specific site, which is often 

accessible when the carrier is in either of two conformations: endofacial (cytoplasmic; e1 

conformation) or exofacial (extracellular; e2 conformation). The carrier (whether empty 

or substrate-bound) is in the transitional occluded state (e()) while it undergoes this 

conformational change, as neither substrate binding site is accessible. Although these 

characteristics distinguish membrane transporters from channels and pores, a wide 

variety of active and passive transporters with a multitude of substrates exist. These are 

grouped under two superfamilies: the Major Facilitator Superfamily (MFS) and the ATP-

Binding Cassette (ABC) superfamily, each of which comprises thousands of transporters 

expressed across all organisms (1). 

 As the larger of the two groups, the ABC superfamily is composed of 

transmembrane proteins that transport a diverse set of substrates, including 

macromolecules. Transport by ABC proteins is coupled to the binding of ATP in an 

active-transport mechanism (1). Unlike the ABC transporters, the MFS transporters are 

passive transporters whose substrates are only small molecules. As facilitative carriers, 

they are able to transport a single molecule down its concentration gradient (uniport), or 

couple transport to the concentration gradient of another molecule through symport or 

antiport. There are a variety of MFS transporters, many of which are H+-coupled 

symporters; some function as antiporters of metabolic intermediates and substrates, 
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including nucleosides, phosphates, oxalates, and sugars (2). The largest MFS group is 

that of the sugar porters (SP), comprising over 130 transporters, which transport hexoses 

in a variety of organisms (3). 

 Although all members of the SP family are similar in that they contain either 12 or 

14 membrane spanning domains (TMs) and cytoplasmic N- and C-termini, they vary in 

size, tissue-specific distribution, and specificity for substrate(s). For example, expression 

of the monocarboxylate transporters (MCTs; (4)) in mammalian erythrocytes, neurons, 

and cells of the muscle, liver, and kidney is essential for the export and uptake of the 

critical metabolites pyruvate and lactate. An integral component of blood glucose 

homeostasis includes the reabsorption of glucose from plasma in the small intestine and 

kidney, where a family of sodium-glucose linked transporters (SGLTs; (5)) uses the 

intracellularly-directed Na+ gradient to catalyze the net uphill flow of glucose from the 

lumen to the cytoplasm. However, export of epithelial cell glucose to the interstitium is 

mediated by the solute-linked carrier 2A gene family (SLC2A) of facilitative glucose 

transporters (GLUTs (6)), which accelerate the net downhill flow of glucose across cell 

membranes.

 The GLUTs are classified as uniporters because they are able to transport sugar 

through uptake or export without requiring the presence of sugar at the opposite trans 

side of the membrane. They are also capable of coupling import of one sugar molecule to 

the export of a second sugar molecule (antiport), but unlike some other MFS transporters, 

GLUTs are not obligate antiporters. Only one of the GLUTs (GLUT13 or HMIT, the H+/
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myoinositol symporter) displays symport, where the movement of one molecule 

(myoinositol) against its concentration gradient is driven by co-transport of another 

molecule down its concentration gradient (in this case, H+). 

GLUT Classes I-III

 To date, fourteen members of the human GLUT family have been identified (7), 

GLUTs 1-14. With the exception of GLUT1, which is known as the basal glucose 

transporter due to its ubiquitous expression, the GLUTs are expressed in a highly tissue-

specific manner (Table 1.1).  The numbering of the GLUTs is mostly based on the advent 

of their discovery and cloning, beginning with the identification of GLUT1 more than 30 

years ago (8), (9). The transporters have been grouped into 3 classes based on sequence 

similarity (10), and to a lesser extent, substrate specificity.

 The Class I transporters, comprising GLUTs 1-4, show 48-63% sequence identity 

with one another. This class of GLUTs has been the most extensively studied and 

characterized, particularly GLUT1, which was first cloned in 1985 (11). While GLUT1 is 

found in all tissues, it is most highly expressed in red blood cells (erythrocytes, (12)), in 

the vascular endothelia at blood-tissue barriers such as the brain, retina, and placenta 

(13), (14), and in CNS astrocytes (15). GLUT2 (16) is critical for glucose transport in 

hepatic metabolic processes, although its detection has been extended to the pancreas and 

small intestine (17). More recently, a role has emerged for GLUT2 in glucose sensing
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Table 1.1  Tissue Specific Expression of Class I-III Human Glucose Transporters 
  (GLUTs) 

  

TRANSPORTER CLASS TISSUE-SPECIFIC EXPRESSION 

GLUT 1 I Ubiquitous; particularly erythrocytes and endothelia, astrocytes 

GLUT 2 I Liver, pancreas, kidney and small intestine 

GLUT 3 I Neurons, leukocytes, sperm, and embryo 

GLUT 4 I Adipocytes and skeletal/cardiac muscle 

GLUT 5 II Intestine, testis, kidney, skeletal muscle, adipose, and brain. 

GLUT 6 III Brain and spleen  

GLUT 7 II Small intestine and colon 

GLUT 8 III Testis, brain, adipose, liver, and spleen 

GLUT 9 II Kidney, liver, placenta, lung, and small intestine 

GLUT 10 III Heart, lung, brain, liver, skeletal muscle, pancreas, placenta and kidney 

GLUT 11 II Heart, skeletal muscle, kidney, adipose, placenta and pancreas 

GLUT 12 III Heart, skeletal muscle, adipose, and prostate 

GLUT13 (HMIT) III Brain 

GLUT 14 (duplicon of 
GLUT3) 

I Testes 
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mechanisms and feeding response (18), (19). The expression of GLUT3 (20) is high in 

neurons (21), where it plays an important role in delivery of glucose to these 

metabolically active brain cells. GLUT14, which is nearly identical (~96%) in sequence 

to GLUT3 and is thought to be a gene duplication, has only been found to be expressed in 

the testis (22). GLUT4 (23), in contrast, is expressed mostly in adipose tissue and skeletal 

muscle, where the majority of the transporter resides in intracellular pools until its 

presence at the cell surface is stimulated by muscle contraction or insulin. 

 The class I transporters transport glucose and galactose, and with the exception of 

GLUT2, also transport dehydroascorbic acid (DHA), the oxidized form of vitamin C 

(23), (24), (25), (26). GLUT2, the only low-affinity Class I glucose transporter (27), 

transports glucosamine with high-affinity and also transports fructose. All Class I 

transporters are also sensitive to the compound cytochalasin B (CCB), which can non-

competitively inhibit transport (28), (29). 

 Unlike Class I, the members of Class II are primarily fructose transporters, and 

mostly are insensitive to inhibition by CCB. Class II transporters comprise GLUTs 5, 7, 

9, and 11, which show 36-40% sequence identity with one another.  GLUT5 (30), (31) is 

primarily responsible for reabsorption of fructose in the small intestine, where it may be 

aided by GLUT7 (32), (33), which is also highly expressed in the testis and prostate. Both 

GLUT9 (34) and GLUT11 (35) have several splice variants that affect their expression. 

Of the two splice variants of GLUT9, GLUT9a is localized to the basolateral membrane 

of kidney proximal tubules, while GLUT9b is localized to the apical membrane (36), 
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(37), (38). Recently, GLUT9 has been shown to transport urate in high capacity, with the 

ability to exchange urate for glucose or fructose (39). Of the three isoforms of GLUT11, 

the first (GLUT11A) is expressed in the kidney and cardiac/skeletal muscle; GLUT11B is 

found in hepatic, adipose, and placental tissue; and GLUT11C is expressed in cardiac/

skeletal muscle and adipocytes (40), (41), (42). Currently, the role of GLUT11 in 

metabolic homeostasis is not well understood.

 The least-characterized GLUTs are also the least similar to one another in 

sequence, with 19-41% sequence conservation. These are the Class III transporters, 

comprising GLUTs 6, 8, 10, 12, and HMIT. The members of Class III are more similar to 

Class I in that they are primarily glucose transporters, although there is recent evidence of 

GLUT8-mediated fructose transport in enterocytes (43). GLUT8 has also been shown to 

transport glucose with high affinity (17), as has GLUT10 for glucose and galactose (44). 

While not all Class III GLUTs have been investigated, GLUT8 has shown sensitivity to 

CCB (45). Some Class III transporters, particularly GLUT6 (46), GLUT8 (45), (17), and 

GLUT12 (47) also contain targeting sequences that keep them sequestered in different 

compartments within the cell, where they may have specific functions. For example, 

GLUT8 has been shown to mediate glucose exit from the endoplasmic reticulum into the 

cytoplasm in neurons (48). Although GLUTs 6 and 8 do not appear to translocate to the 

plasma membrane in response to hormonal stimuli (49), GLUT12 may be another 

insulin-responsive transporter (50). GLUT13 (HMIT) has been shown to be expressed 

primarily in the brain (51), where it transports myoinositol, a critical second messenger 
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molecule and phospholipid precursor. At this point in time, the precise roles of some of 

the class III transporters remain unclear (52). 

GLUT-based Mutations and Disease

 Because one or more of the GLUTs is expressed in every cell in the body, 

mutations to GLUT-encoding genes or factors affecting transporter localization can have 

major consequences for metabolism of certain sugars or proper function and homeostasis 

of different organ systems. 

 For example, mutations to the basal transporter GLUT1 can have severe effects on 

development and brain function. GLUT1-haploinsufficiency, or G1DS (53), is a rare 

autosomal dominant genetic disorder with approximately 100 known cases (54), some of 

which are familial (55), (56). Different mutations in the GLUT1 gene have varying 

effects on the ability of the protein to transport glucose, which is particularly detrimental 

to cerebral glucose supply. Phenotypes of the disorder include high levels of lactic acid, 

causing seizures and delays in development. Some of these effects can be offset by 

lifelong adherence to a ketogenic diet (57), if detected early enough.

 Similarly, Fanconi-Bickel syndrome is present in a small number of individuals 

with autosomal recessive mutations to the GLUT2 gene (58), (59), some of which 

completely abrogate the transport capability of GLUT2. This results in the inability of 

these individuals to ingest simple sugars. Fanconi-Bickel syndrome is characterized by 
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slowed growth, hypoglycemia, enlarged liver, and kidney damage, which may result from 

impaired ability to reabsorb sugar from urine (60).

 More globally, a role for GLUTs as markers for cancer has been under 

investigation for many years, as upregulation of certain GLUTs (61) is necessary for the 

increased metabolism and rapid cell growth characteristic of many cancers (62). GLUT1 

and/or GLUT3 are highly upregulated in several tumor types, including breast, skin, 

ovarian, cervical, kidney, brain, lung, and colorectal cancers (63), (64), (65), (66), (67), 

(68), (69), (70). There is a potential role in cancer metabolism for GLUT12, which was 

identified in mammary and prostate cancer cells (71), (72), and is upregulated in cancer 

lines in response to hormonal stimulation (73). 

 Hormonal control of glucose transport is also central to metabolic disorders. For 

example, diabetes is a chronic metabolic disorder that affects over 300 million people 

worldwide. In type 1 diabetes, a loss of pancreatic β cell mass or function results in 

cessation of insulin production, while in type 2 diabetes, cells become resistant to 

secreted insulin. The effect of either disease state is hyperglycemia, with long-term 

complications such as damage to the cardiovascular tissues, kidneys, and nervous system. 

A role for GLUT4 regulation in type 2 diabetes is still under active investigation, as the 

vast majority of glucose uptake in response to insulin is due to an increase in GLUT4 at 

the plasma membrane in muscle cells (74), (75), (76). Loss of this insulin-stimulated 

GLUT4 translocation is a hallmark of insulin resistance, an early pathology in the 

development of type 2 diabetes (77). Studies in transgenic mice have shown that 
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alterations to GLUT4 (78) or the pathways signaling its trafficking result in higher 

plasma levels of insulin and glucose (79). Knockouts of muscle or adipose cell type-

specific GLUT4 result in defective endocrine signaling, which perturbs the normal 

physiological responses to feeding – namely increased glycogen synthesis and inhibition 

of liver gluconeogenesis – further contributing to insulin resistance and elevated blood 

glucose (80), (81). Such chronic hyperglycemia is damaging to organs and further 

impairs the ability of tissues to maintain glucose homeostasis through normal sensing and 

counter-regulatory responses (72). 

 Manipulation of GLUT4-mediated glucose transport is further linked to metabolic 

disorders through side effects observed with medications. Some of the protease inhibitors 

commonly prescribed to HIV-patients, such as indinavir, have been shown to directly 

interact with GLUT4 (82), (83). Over time, this results in development of metabolic 

syndrome in many of these patients, which is characterized by increased blood glucose 

levels, triglycerides, and cholesterol; abdominal adiposity, hypertension, and risk of type 

2 diabetes and cardiovascular disease (84), (85), (86), (87). There is also an increased 

prevalence for patients with these types of metabolic disorders to show hyperuricemia, 

the condition of elevated levels of uric acid in the blood leading to gout (88). Linking 

plasma urate levels to allelic variance led to the discovery of GLUT9 (89), which was 

recently functionally characterized as a urate transporter (39), (90), expanding the 

importance of GLUT-mediated urate homeostasis in disease (91).

11



 Clearly, there are numerous established and potential roles for GLUTs in the 

pathologies of a broad spectrum of metabolic diseases and syndromes. As the gatekeepers 

for cellular hexose entry and exit throughout the body, GLUTs are an integral part of 

metabolic processes, both normal and disordered. As such, GLUTs remain potential 

therapeutic targets, particularly in diabetes and cancer. If manipulation of GLUT 

expression, function, and regulation are to be viable strategies, these processes first must 

be clearly understood through rigorous study.

Common Topology and Motifs

 In order to characterize differences in functional properties of the glucose 

transporters, it is helpful to compare their sequence and structural attributes. Like many 

of the MFS transporters, while they do not share a high degree of sequence conservation 

(25-68%), all of the 14 mammalian GLUTs share similar topology. Hydropathy analysis 

predicts a total of 12 trans-membrane spanning α-helices (TMs) (11), (92), which was 

confirmed by scanning glycosylation mutagenesis (93), FTIR (94) and CD (95) 

spectroscopy analysis. Within the 12 TMs, there is symmetry between TMs 1-6 and TMs 

7-12, which may be the result of gene duplication early in GLUT evolution (96). The first 

6 TMs are connected to the last 6 by a long intracellular loop known as loop 6 (see Figure 

1.1). The length of each GLUT is variable, with an average sequence length of 

approximately 500 amino acids. GLUT1 is 492 residues with a molecular weight of 

~55kDa, while GLUT8 is the smallest (477 residues) and HMIT is the largest, at 648
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Figure 1.1  Putative topology of human GLUT1

The 12 transmembrane TM domains of the transporter are shown as a cross-section 
through the membrane, with the same coloring scheme as the TMs in Figure 1.2. Both the 
N- and C-termini are cytoplasmic, as is the large loop (loop 6) connecting TMs 6 and 7. 
The single glycosylation site on loop 1 (asn 45) is indicated.
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amino acids. Differences in length tend to result from variations in the length of the N- 

and C-termini and the loops connecting the TMs, while the length of each TM is more 

similar across the GLUT family members. Indeed, the 12 TMs are the regions of the 

protein that have the highest sequence conservation among the GLUTs (10). 

 The regions with the highest degree of sequence divergence among the GLUTs 

are thus the N- and C-termini and loops connecting the TMs, in particular loops 1 and 9 

(10). A single N-linked glycolsylaton site is present in one of these two loops; in Class I 

and II, loop 1 is glycosylated (GLUT1, asn 45; (97)), while Class III transporters are 

glycosylated on loop 9. Although the other GLUTs have not been as extensively 

characterized as GLUT1, the heterogeneous glycosylation of GLUT1 has been linked to 

its transport ability (98). There are several conserved sequence motifs among the GLUTs, 

including PMY (TM4), PESPRY/FLL (loop 6), GRR (loop 8), VPETKG (C-terminus), 

and QQLSGIN (TM7). Transporter selectivity for fructose appears to be due to critical 

hydrophobic residues in TM7, as has been shown in GLUTs 2, 5, 7 (99), 9, and 11 (100).  

 Although GPGPIP/TW (TM10) is also conserved, the class II GLUTs lack the Trp 

residue, which has been shown to be critical for sensitivity to the compounds CCB and 

forskolin, both transport inhibitors of the class I GLUTs (101). Presence of the Trp in 

TM10 may have a direct role in CCB inhibition, as both this motif and sensitivity to CCB 

are absent in the Class II transporters (102). While Class III GLUTs contain the TM10 

Trp, investigation of their inhibitor profiles is incomplete. A different Trp in TM11, which 

is conserved in all GLUTs, is critical for the proper localization and function of GLUT1 
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(103). Several studies investigating the importance of conserved residues GLUT1 and 

GLUT4 have shown loss of glucose transport ability with point mutations in loop 2 

(R92), loop 4 (R153), loop 7 (Y293), loop 8 (RR 333-334; E329), TM10 (P385), and 

loop 10 (E393; R400) (104), (105), (106), (107).

 Although many of the studies referenced above draw from comparative sequence 

analysis across all of the 14 GLUTs, the vast majority of functional characterization has 

focused on the Class I glucose transporters, particularly GLUT1 and GLUT4. This is due 

in part to the earlier discovery and cloning of the Class I members. The abundance and 

ability to purify relatively large amounts of GLUT1 protein from erythrocytes has also 

aided in its characterization. Many efforts have focused on analysis of the surface 

expression and trafficking of GLUT4 in response to insulin, due to its importance in 

diabetic metabolism. More recently, the importance of GLUT3 in brain metabolism has 

emerged, prompting analysis of the cooperative roles of GLUT3 with other transporters, 

such as GLUT1 at the blood-brain barrier and MCTs in lactate transport among astrocytes 

and neurons (108), (109). Although initially characterized as a hepatic glucose 

transporter, GLUT2 has an emerging additional role as a critical glucose sensor in 

counter-regulation, poised to mediate metabolic signaling at the neuronal/endocrine axis 

(110), (111). Though the importance of the Class II and Class III glucose transporters is 

undisputed, their individual functions are less well characterized and are the subject of 

current investigation. Because most of our structural and functional knowledge of glucose 

transporters relies upon analysis of the Class I GLUTs, they are the focus of this work.
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Class I GLUT Tertiary Structure

 Although common putative topology and sequence motifs exist among the 

glucose transporters, a crystal structure for a member of this family has yet to be solved. 

In the absence of such data, it is difficult to predict the spatial arrangement of TMs and 

their interactions during various conformational states of the transport cycle. However, 

structures displaying similar architecture have been solved for several homologous MFS 

bacterial transporters (96), including a cryo-EM structure of the oxalate transporter 

(OxIT (112)), and crystal structures of the lactose permease symporter (LacY (113)) and 

the glycerol-3-phosphate antiporter (GlpT (114)). Through homology-modeling the 

sequences of GLUTs 1, 3, and 4 on these bacterial transporter crystal structures, studies 

have proposed putative models of GLUT tertiary interactions. 

 Analysis of GLUT1 structure has been performed based on both LacY (115) and 

GlpT (116), with the GlpT-based model achieving better statistical scores. These studies 

juxtapose TMs 1, 2, 4, 5, 7, 8, 10, and 11 in a symmetrical arrangement, forming a 

central, water-filled sugar translocation channel coordinated by the scaffolding TMs 3, 6, 

9, and 12 (see Figure 1.2; (116)). The proposed structure for GLUT3 (117) is based on the 

crystal structure of the channel protein MscL (118) and, more loosely, on the low-

resolution structure of the pore aquaporin (119). While this model proposes a similar 

overall architecture in that several TMs are arranged to form a central transport cavity, the 

putative translocation pore is formed by only TMs 5, 7, 9, and 11. 

16



Figure 1.2 Threaded model of human GLUT1 based on homology-
modeling with the GlpT crystal structure 

A, Cross-sectional view of the 12 transmembrane (TM) spanning α-helices 
in the plasma membrane, colored corresponding to the color scheme in B, 
based on the homology modeling of GLUT1 on GlpT (Salas-Burgos et al., 
2004). B, Cartoon diagram of the 12 TMs arranged spatially, looking up 
through the transporter from inside the cell, where the cytoplasmic loop 6 
(connecting TMs 6 and 7), N- and C-termini are indicated by blue lines. The 
translocation pore is formed by TMs 1, 4, 7, and 10 (magenta) with TMs 2, 
11, 5, and 8 (blue). The remaining TMs 3, 6, 9, and 12 (green) are positioned 
as scaffolding domains coordinating the arrangement of the TMs involved in 
sugar binding and translocation.
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While the general TM arrangement is somewhat similar to the GLUT1 modeling, there 

are a disparate number of TMs between GLUT3 (12 TMs) and the scaffold proteins 

(MscL has 10 TMs; aquaporin has 6 TMs), neither of which is an MFS transporter. The 

docking studies of GLUT4 (120), (121), however, were also performed based upon the 

GlpT crystal structure. The proposed GLUT4 structure agrees with the spatial 

arrangement of the other GLUT homology models, showing interactions between glucose 

and putative translocation-channel TMs 1, 5, and 11, with helical interactions between 

TMs 1-5 and 2-4, respectively. However, one caveat of the GLUT3 and GLUT4 models 

is that both are partially based on biochemical data obtained for GLUT1, despite 

sequence agreement among the transporters of 63% or less. However, the GLUT4 model 

was extended with molecular dynamics simulations of not only substrates and inhibitors 

common to the Class I GLUTs, but also of GLUT4-specific inhibitors (121). 

 While both the LacY and GlpT structures were crystallized in the endofacial 

conformation, other MFS homologs have been crystallized in the exofacial conformation 

(fucose transporter, FucP; (122)) and an intermediate conformation (multi-drug 

transporter, EmrD; (123)). Further modeling of GLUT1 based on these scaffolds may 

provide insight on helix-packing and TM arrangements in these orientations, with 

implications for modeling the substrate-bound or occluded empty carrier during 

conformational transitions. 

 While the putative topology of GLUT1 has been refined and tested by further 

studies probing the accessibility of regions of the protein by various methods, these data 
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must also be used to assess the homology-threaded structure presented above. Several 

point mutations in GLUT1 shown to be critical to glucose transport based on 

investigation of residues involved G1DS (124), (125) or mutagenic structural studies 

(103), (126), (127), (128), (129) are indeed positioned within the sugar translocation pore 

in the GlpT-based model (116). Exposure of the TM-TM connecting loops has been 

analyzed by scanning glycosylation mutagenesis (93). Exposed lysine residues were 

analyzed by accessibility to proteolytic cleavage and modification by various probes 

(130), revealing that TMs 1 and 8 readily dissociate from the membrane upon being 

released from the rest of the scaffold. Extensive cysteine-scanning mutagenesis studies 

support the putative arrangement of the TMs in the model presented above, particularly 

that TMs 3, 6, 9, and 12 are outer (scaffolding) helices (131), (132), (133), (134), and that 

TM8 is part of the sugar translocation pore (135). However, some of these studies also 

show accessibility in regions that are not predicted to be accessible by the model (136). 

 A study aimed at testing the accuracy of MFS homology modeling compared the 

modeling of GlpT on the crystal structure of LacY to the actual crystal structure of GlpT 

as a proof of concept (137). The results suggest that while the GlpT-based GLUT1 model 

is consistent with overall TM arrangement and topology, it is insufficient to predict 

positioning of individual residues and side chains, and hence interactions among specific 

residues within the TMs and loops. This is not surprising, as GLUT1 sequence identity 

with these bacterial homologs is less than 20%. However, the sequence conservation 

among crystallized MFS proteins (LacY, GlpT, FucP, EmrD) is also only ~30%, yet all 
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solved structures show a similar architecture. In addition, the modeling of GlpT on LacY 

deliberately excluded any experimental evidence to avoid bias (137), whereas the 

modeling of all three GLUT structures attempted to validate and even constrain proposed 

interactions with the available experimental data. In general, these results are in good 

agreement with the homology-modeled structures, with the exception of the putative 

endofacial binding site of the inhibitor CCB in the GLUT1 model (116). 

 While the accuracy and utility of homology-modeled structures can be debated 

from either viewpoint, the reality exists that without a GLUT crystal structure, homology 

modeling and refinement based on additional experimental evidence is the only avenue 

currently available to explore the structure-function relationships in glucose transporters. 

As definitive characterization of GLUT tertiary structure has eluded the field, so too has 

an understanding of interactions between multiple GLUT subunits, and thus the potential 

role of oligomerization in catalytic function.

Class I GLUT Quaternary Structure

 To date, the oligomeric state(s) of GLUT1 have been the most studied. While 

GLUT1 dissociates to a molecular weight consistent with a monomer when resolved on a 

denaturing gel (8), a variety of other studies suggest it exists in a higher order oligomeric 

state. Based on whether or not the samples were exposed to reducing conditions, particle 

sizes consistent with dimers and tetramers have been shown by freeze-fracture electron 

microscopy (138), (139), dynamic light scattering (138), size-exclusion chromatography 
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(140), (141), (142), and co-immunoprecipitation of heterologously-expressed GLUT1-

GLUT4 fusion proteins (143). Based on the observation that GLUT3 appears to exist as a 

functional monomer or dimer ((144), Levine K, DeZutter J, and Carruthers A, in 

preparation), efforts to identify the domain(s) required for GLUT1 oligomerization by 

domain-swapping mutagenesis with GLUT3 implicate GLUT1 TM9 as a tetramerization 

motif (Levine et al., in preparation). The oligomeric state of GLUT1 may complicate 

analysis of its kinetic behavior; for example, studies aimed at defining CCB-binding 

stoichiometry support two fundamentally different oligomerization states, depending on 

whether the transporter is purified in the presence (145), (12) or absence (146), (140), 

(141) of reductant. 

 While studies employing size-exclusion chromatography analysis of the other 

Class I transporters, GLUTs 2 and 4, are ongoing (J. DeZutter and A. Carruthers, 

unpublished), their oligomerization state(s) is not yet known. Aside from the potential 

catalytic advantages of multimeric organization, the relative activity of glucose 

transporters may be affected by either direct regulation or by control of GLUT expression 

at the plasma membrane.

Regulation of Class I GLUT-mediated Transport

 GLUT1 sequence contains several nucleotide-binding motifs (GFSKLGKS111-118, 

a Walker A nucleotide binding motif; KSVLK225-229; and GRRTLHL332-338, a Walker B 

nucleotide binding motif). While depletion of intracellular ATP through metabolic stress 
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stimulates net sugar uptake, presence of ATP has been shown to decrease both capacity 

and affinity for sugar uptake in red cells (147), (148), an effect that can be competitively 

reversed by AMP and ADP (149). The binding of ATP to GLUT1 displays cooperativity 

(150), where the binding of one molecule of ATP has an effect on the affinity of binding a 

second. As this evidence argues for a direct interaction between ATP and GLUT1, many 

studies have aimed to elucidate the region(s) of the protein involved. Utilizing analysis of 

protection by covalent modification (151) and protease accessibility (152) in the presence 

and absence of ATP, studies have determined that cytoplasmic regions in the N- and C-

termini, loop 6, and the loop connecting TMs 8 and 9 (loop 8) are implicated in ATP 

modulation of the transporter. Further investigation by alanine-scanning mutagenesis 

confirms that two residues within loop 8 are critical for ATP interaction with GLUT1 

(153). 

 This nucleotide-binding motif in loop 8 is conserved within the other Class I 

GLUTs, as well. While the specific regulation by ATP has not been investigated for these 

transporters, ATP has been shown to reduce glucose uptake in insulin-stimulated 

adipocytes, implying regulation of GLUT4-mediated transport (154). GLUT4 has shown 

sensitivity to tyrosine kinase inhibitors (155) and flavonoids (156), such as genistein and 

quercitin, which also block GLUT1 uptake by interacting with the loop 8 ATP-binding 

motif (157). An interaction between ATP and this motif in GLUT4 was modeled in a 

ligand-docking study (158), implying that direct modulation is possible for GLUT4 as 

well. While this phenomenon has not been investigated as thoroughly in GLUTs 2 and 3, 
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intestinal cells expressing GLUT2 also show inhibition of uptake by flavonoids (159). 

These studies raise the possibility that several of the glucose transporters can be regulated 

at putative nucleotide-binding domains by multiple ligands.

 Aside from direct interaction with other molecules or cofactors, the activity of 

GLUTs can be modulated through changes in how much transporter is present at the 

surface. For example, while GLUT3 is expressed at the plasma membrane in the brain, it 

is intracellular in both platelets and white blood cells. In platelets, GLUT3 is sequestered 

in α-granules until it is translocated to the surface upon stimulation by thrombin (160). In 

monocytes and β-lymphocytes, GLUT3 surface expression is triggered by insulin (161), 

(162), (163), which has also been shown to increase GLUT1 at the surface in insulin-

responsive cells (164), (165).

 GLUT4 has long been known as the ‘insulin-sensitive transporter’ due to its rapid 

release from intracellular pools to the plasma membrane upon insulin stimulation (166). 

Under basal conditions, GLUT4 is sequestered in intracellular pools by N-terminal FQQI 

(167), C-terminal dileucine (168), (169), (170), (171) and endosomal targeting 

(TELEYLGP, (172)) motifs. The hormonally-activated, reversible translocation of 

GLUT4 has been extensively studied (173), and it has been shown that insulin acts upon 

the rate of GLUT4 exocytosis through the trafficking pathways mediated by Akt/PI3K 

(phosphatidylinositide-3 kinase) (174) and Rab/GAP (GTPase Activating protein) (175). 

This results in an 8- to 20-fold increase in insulin-stimulated glucose uptake over basal 

conditions (176), (177).
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 Stimulation of other major signaling cascades, such as the protein kinase C (PKC) 

pathway, also contributes to plasma membrane localization of GLUTs. This has been 

shown with a variety of growth factors, which are able to increase surface levels of 

GLUT1 (178), (179). In addition, metabolic stress (i.e. hypoxia, exercise) also has been 

shown to cause an increase in GLUT4 surface expression through the AMP-activated 

protein kinase (AMPK) pathway (180), (181). More recently, this has been extended to 

show that acute metabolic stress increases GLUT1 cell-surface expression in endothelial 

cells (182) in an AMPK-dependent manner (183). Stimulation of transporter recruitment 

to the cell surface by both metabolic stress and insulin are capable of stimulating sugar 

transport up to 50-fold over basal rates (184). 

 While the activity of glucose transporters may be modulated by the extent of their 

expression or binding of external factors, the GLUTs possess intrinsically different 

substrate affinities and transport capabilities as well. These characteristics have been 

studied most extensively in GLUT1, particularly in red cells. Many of the classical 

kinetic assays were first established in erythrocyte experimental systems, but have since 

been extended to analyze differences in substrate transport by other GLUTs in a variety 

of cell types. 

Kinetics of GLUT-mediated Glucose Transport

 Several common experimental methods have been established to perform kinetic 

analysis of GLUT-mediated sugar transport (185), (186), (187); in all three, Vmax and Km 
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can be obtained for both sugar entry and exit under different conditions. The first, zero-

trans (ZT), describes the measurement of unidirectional uptake or efflux of a varied 

concentration of labeled sugar on one side (cis) of the cell, to another side (trans), where 

no sugar is present. For example, zero-trans uptake measures the rate of sugar import 

from the interstitium into a cell that does not contain sugar. In the second type of 

experiment, equilibrium exchange, the total concentration of sugar may be varied, but it 

is kept equal on the cis and trans sides; in this way, the rate of exchange may be 

measured while the system is at equilibrium. The third method, infinite-cis, measures 

sugar moving from a saturating concentration on one side (cis) to the other side where 

sugar is varied to saturating (trans). More commonly, in an infinite-trans experiment, the 

cell is pre-loaded with a saturating amount of sugar inside (trans), and uptake of a 

varying amount of sugar from the outside (cis) is measured. 

 The majority of sugar transport studies have focused on the class I GLUTs, and 

GLUT1 has been the most extensively characterized (188), (189), (190) due to the 

experimental advantage presented by the high expression levels of GLUT1 in 

erythrocytes and the ability to isolate and purify the transporter from these cells.  

Although transport measurements of metabolized sugars are simplified by the slower 

metabolic processes in erythrocytes compared to conventional cell lines, the kinetics of 

red blood cell transport have proven to be complex as well (184). Many systems for 

heterologous expression have been used to add to the characterization of GLUT1-
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mediated sugar transport, such as Xenopus oocytes (191), (192), (134), mammalian cell 

lines (164), (142), (24), (193), and yeast (194), (196).

 Many studies employ both radiolabeled analogs of glucose and specific inhibitors 

in order to measure and stop transport. Two widely used sugar analogs are 2-deoxy-D-

glucose (2-DG) and 3-O-methyl-D-glucose (3-MG) (29). Measurements of unidirectional 

sugar uptake are simplified by use of 2-DG, because it is phosphorylated inside the cell 

by hexokinase into 2-deoxy-D-glucose-6-phosphate (2-DG-6-P) (195), which is no longer 

a substrate for the cell. All Class I GLUTs have been shown to transport 2-DG. In 

contrast, 3-MG is not metabolized, and thus can be transported into and out of the cell 

(196). As previously referenced, the compound CCB is a potent endofacial inhibitor of 

Class I GLUT-mediated transport (Ki(app) ~0.2 µM; (28), (29)), and is often used in 

experimental studies to quench transport measurements. Other commonly used inhibitors 

include phloretin, which is thought to act at both endo- and exofacial sites (Ki(app) ~0.2 

µM; (28)); and maltose, a lower-affinity competitive exofacial inhibitor (Ki(app) ~6 mM; 

(28)). Studies employing these inhibitors and sugar analogs have aimed to characterize 

the transport capacity and affinity among the glucose transporters.

 While physiologic affinity (Km) for substrate varies with both transporter and 

substrate, the affinities for glucose and 2-DG are similar between GLUT1 and GLUT4 

(Km(app) 2-6 mM (197), (198), (199), (144) or 10-14 mM (200)). While the reported 

affinities of GLUT1 and GLUT4 for 3-MG differ in some reports (Km(app) ~20 mM for 
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GLUT1 and ~2-5 mM for GLUT4 (191), (201), (202)), other studies have shown that 

they are similar (Km(app) ~6 mM for both (203); ~4 mM for GLUT1 (204), (205)).

 One of the hallmarks of human erythrocyte GLUT1-mediated transport is 

asymmetry between the rates of sugar uptake and efflux. Both the rate and affinity of D-

glucose and 3-MG exit are ~5- to 10-fold greater than the Vmax and Km for entry under 

zero-trans conditions (206), (207). While the magnitude of asymmetry is larger at lower 

temperatures, it can be measured over the range of 4 to 37°C (207). Despite the presence 

of asymmetry in human GLUT1, the ratio of Vmax : Km is the same under zero-trans exit, 

entry, and equilibrium exchange uptake conditions. Unlike GLUT1, both GLUT2 and 

GLUT4 display symmetrical uptake and exit of 3-MG when endogenously expressed in 

rat hepatocytes (208) or in basal and insulin-stimulated adipocytes (209). Because the 

absolute affinities may vary based on the system in which the transporters are tested, the 

experimental parameters, and the temperature at which the measurements are taken, it is 

important that direct comparisons be performed. 

 While it has been observed that common methods of measuring sugar transport 

may underestimate rates in erythrocytes (210), particularly those of 2-DG transport, there 

exists a complex interplay of variables including the cell system employed, surface 

expression of the transporter, choice and concentration of sugar analog(s), time point of 

measurements, and temperature at which the measurements are performed. Some of the 

complex kinetic characteristics of GLUT1-mediated transport become more or less 

pronounced depending on these variables.
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 While the initial kinetic studies in sheep placenta were the basis for the 

differentiation between transporters and simple channels (211), emerging data of complex 

kinetic behavior in erythrocytes have been incompatible with the most basic models for 

GLUT-mediated substrate transport. Over time, a growing body of experimental evidence 

has led to the development and refinement of several transport models to explain these 

observations.

The Simple Carrier Model

 The most straightforward and oldest model for GLUT-mediated transport is the 

simple carrier (211), (212), (213), (214), which assumes that the basic catalytic unit 

comprises a single GLUT molecule. The simple carrier is capable of presenting a single 

substrate-binding cavity, which exists in either the endofacial (e1) or exofacial (e2) 

conformation (see Figure 1.3). When a single molecule of substrate is bound by the 

carrier in either conformation, the carrier undergoes a transformational change through an 

intermediate, occluded stage (e(S)). The substrate-binding cavity then reorients to face 

the opposite side from which the substrate was bound, and the substrate dissociates from 

the transporter, generating an empty carrier in the opposing conformation. One cycle of 

this unidirectional movement of substrate is known as translocation. In the instance of 

translocation of a sugar molecule into the cell, the empty carrier is now in an endofacial 
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Figure 1.3  The Simple Carrier model for transport

The simple carrier may present 1 of 3 conformations at any instant: e2, exposing 
an exofacial sugar binding site; e(), an intermediate state in which neither surface 
of the carrier exposes a sugar binding site and where a central cavity is occluded 
from extra- and intracellular water; and e1, exposing an endofacial sugar binding 
site. These 3 states reversibly inter-convert as e2 ⇌ e() ⇌ e1. When extracellular 
sugar (So) or intracellular sugar (Si) is complexed to e2, e(), or e1 (denoted as e.S2, 
e(S), or e.S1, respectively), the inter-conversions are termed “translocation.” 
When no sugar is bound, the inter-conversions are termed “relaxation.”
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(e1) conformation. In order to bind a second molecule of sugar on the outside of the cell, 

the substrate-binding cavity must first reorient to the exofacial (e2) state. This can occur 

through one of two pathways. If the carrier remains empty, it must undergo “relaxation,” 

in which it isomerizes from the e1 to the e2 conformation via e(). Alternately, if 

intracellular sugar is present, the e1 conformer can become complexed with another 

molecule of sugar (to form e.S1), undergo reorientation via e(S) to form e.S2, and release 

the bound sugar at the exterior of the cell to regenerate e2. Because this second pathway 

involves translocation of a substrate, it is called “translocation,” not relaxation. However, 

the simple carrier is not compatible with all experimentally observed transport, 

particularly in erythrocytes. Studies have shown that the endofacial inhibitor CCB is able 

to inhibit transport at the same time as the extracellular inhibitor maltose (215). The 

simple carrier model is incompatible with the apparent binding of both endo- and 

exofacial ligands simultaneously.

The Fixed-Site Carrier Model

 An alternate model of the single subunit-based carrier is the fixed-site carrier (see 

Figure 1.4; (262)). This model posits a higher-affinity exofacial binding site and a lower-

affinity endofacial binding site, allowing for the greater Vmax and Km observed for sugar 

exit than entry under saturating extracellular sugar concentrations (206), (216), (217). 

The fixed-site carrier model differs in that the carrier presents both endo- and exofacial 

(e1 and e2) binding sites simultaneously. 
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Figure 1.4  The Fixed-Site Carrier model for transport

The fixed site carrier simultaneously presents two sugar binding sites, endofacial 
(e1) and exofacial (e2), and a central cavity. The central cavity is large enough to 
permit 2 sugar molecules to pass in opposite directions. Dissociation of sugar 
from e2 to the cavity and subsequent association with e1 is called exchange (top 
cycle). When e1 and e2 are occupied by sugar, exchange of bound sugar with 
cavity sugar is called “geminate exchange” (bottom cycle). 
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This would allow sugar or inhibitors to bind the transporter on both sides at the same time 

and be taken up into a central cavity, where the molecules could exchange past one 

another to cis- and trans- binding sites within the cavity, upon which they would 

dissociate from the carrier and be released to the opposite side of the membrane.

 The fixed-site carrier explains how the Vmax for exchange can be equal for two 

substrates with disparate translocation rates (218). This model is also compatible with the 

observed differences in substrate stereospecificity (219). Despite the partial overlap in 

common substrates (glucose, fructose, and 2-DG) among GLUTs of all three classes, 

there is evidence which suggests that the stereospecificity of the substrate plays an 

important role in its recognition by the transporter. For example, the hexose C1 hydroxyl 

position appears to be most important for glucose-exofacial transporter interactions in 

Class I GLUTs (204), while the C3 and C4 hydroxyl positions may also play a role in 

fructose transport by GLUTs 2 and 5 (220), (221). Evidence suggests differences in the 

endofacial binding site, where the C6 position of the hexose may become increasingly 

important for interactions (222). It has been proposed that the differences in substrate 

specificity indicate the presence of a selectivity filter that is distinct from the sugar 

translocation pore (223).

 The fixed-site carrier model is also consistent with the multiphasic nature of 

transport. Uptake at millisecond time points determined by quench-flow analysis 

indicates that GLUT1-mediated transport in erythrocytes is multiphasic (224). This study 

describes rapid, fast and slow phases of glucose translocation, which are complicated by 
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potential re-binding of substrate at the e1 site, or slow release of substrate into a water-

based compartment formed by the cytosolic domains of the transporter. 

 While both the simple carrier and the fixed site carrier models are consistent with 

the asymmetry observed in GLUT1-mediated transport, neither can explain the low Km 

observed in infinite-cis entry or infinite-trans exit (206), (225), (226). In addition, the 

fixed site carrier model fails to explain data suggesting allosteric or cooperative binding 

of modulators or inhibitors, such as ATP and CCB (227), (228), (229), (150). Although 

ATP has been shown to modulate GLUT1-mediated transport, the precise mechanism is 

unknown. Binding of ATP is thought to affect transport rate and substrate affinity by 

allosteric modulation of intracellular sugar binding sites (230). Interestingly, GLUT1 

binding of endofacial inhibitors (CCB, forskolin) or exofacial inhibitors (maltose) at low 

concentrations has been shown to increase affinity for sugar at the exofacial site (228), 

(229). This cooperativity indicates the presence of non-catalytic sites for allosteric 

modulation of the transporter, leading to the necessary refinement of the fixed-site carrier 

model.

The Modified-Fixed Site Carrier Model

 To address the complex behaviors of allostery and cooperativity observed in red 

cell transport, a hybrid model of the simple and fixed-site carriers has been proposed (see 

Figure 1.5; (228)). In this model, two (or more) functional simple carrier subunits are 

coupled in a functionally anti-parallel fashion. Each subunit may still only present a 
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Figure 1.5  The Modified Fixed-Site Carrier model for transport

A two-site variant of the simple carrier in which the carrier comprises 2 (or more) 
subunits, which are functionally coupled in an anti-parallel fashion. If one 
subunit presents an e2 site, the adjacent subunit must present an e1 site and vice 
versa, even if only one subunit translocates a sugar molecule (top cycle). If only 
one subunit contains a bound sugar, the unoccupied subunit impedes 
translocation via the occupied subunit because the unoccupied subunit undergoes 
relaxation, which is slower than translocation (as with the simple carrier, Figure 
1.3).
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single substrate binding site at opposite sides of the membrane (e1 or e2, as in the simple 

carrier). However, conformational change of one subunit forces the adjacent subunit to 

undergo the opposite isomerization to the opposite confirmation, regardless of whether it 

is empty or complexed with substrate. Sugar could be translocated in both directions at 

the same time, or unidirectional sugar uptake or efflux could occur with one carrier 

occupied and the other, vacant.

 As additional experimental data is gathered in a variety of systems, further 

refinement of these transport models is expected. However, lack of a crystal structure for 

any of the GLUTs precludes a definitive understanding of the physical mechanism of 

transport. The current models have been developed based on decades of experimental 

evidence, and some have been refined based on the topology and threaded structure 

discussed above. Several models exist due in part to the complex transport behavior 

exhibited by erythrocyte GLUT1, which cannot always be explained by the more 

simplistic models of carrier-mediated sugar transport. However, there are other observed 

kinetic behaviors that are consistent with all three models for transport, yet the basis of 

which are not understood. One such behavior is that of accelerated-exchange transport, or 

trans-acceleration.

Trans-acceleration in Class I GLUTs

 Since the early experimental characterizations of GLUT1-mediated sugar 

transport, it has been reported that a 2- to 10-fold stimulation of unidirectional sugar 
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uptake is observed in the presence of intracellular sugar (188), (206), (207). This 

stimulation, or acceleration, of uptake when there is sugar in trans has been observed 

with a variety of substrates (glucose, 2-DG, 3-MG) in a variety of cellular environments, 

such as human, avian, dolphin, and rat erythrocytes (231), (148), (232), (233), mouse 

endothelial cells (182), and heterologously expressed GLUT1 in HEK cells (234) and 

Xenopus oocytes (235). Trans-acceleration is also observed for other carrier-mediated 

transport systems such as nucleoside and amino acid transporters, and is one of several 

important functional behaviors that distinguish carriers from channels (186). However, it 

has not been established whether this phenomenon is sequence-based and thus intrinsic to 

GLUT1, whether it is an allosteric modulation of the transporter that requires co-factors, 

whether it is dependent on cellular context, or whether it is simply an artifact of 

experimental conditions used to measure transport. 

 Like asymmetry, trans-acceleration in GLUT1-based systems has been shown to 

be temperature-dependent (207); trans-acceleration is more pronounced at 4°C than at 

physiological temperature. It has been suggested that this is due to the higher prevalence 

of inward-facing carrier (e1) at lower temperatures (207), but this cannot explain trans-

acceleration in the absence of transport asymmetry (e.g. in ATP-free human red cell 

ghosts (236) or in rat erythrocytes (230)).

 The ability to catalyze trans-acceleration has been tested in all the class I GLUTs. 

Human GLUT3 expressed in Xenopus oocytes displays trans-acceleration (237), (24). 

Interestingly, the other Class I transporters, GLUTs 2 and 4, do not display trans-
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acceleration. For example, GLUT2-expressing rat hepatocytes do not show accelerated 

exchange (208). In rat adipocytes stimulated with insulin, where GLUT4 expression is 

very high, trans-acceleration is not observed (203), (177). 

Trans-acceleration in the Context of Transport Models

 While many of the complex behaviors of GLUT-mediated transport are supported 

by one of the prevailing models for transport, trans-acceleration is compatible with all 

three models. In the context of the simple carrier, trans-acceleration is explained by 

assuming that relaxation of the empty carrier is slower than translocation by the 

substrate-complexed carrier. Indeed, relaxation in human erythrocyte GLUT1 proceeds 

50- to 100-fold more slowly than translocation at 4°C (207), (238). In such a case, 

intracellular sugar would permit the carrier to bypass the slower step of relaxation, 

thereby undergoing many more rounds of translocation until equilibrium is reached. At 

ice temperature, a greater proportion of the transporters exist in the e1 conformation, 

assuming the simple carrier hypothesis is correct (207). While this might lead to the 

conclusion that a greater number of opportunities would exist to drive e1 back to e2 via 

translocation in the presence of intracellular sugar, any such affect would be offset by the 

10-fold lower affinity that e1 has for substrate (207). Therefore, the major determinant of 

trans-acceleration via the simple carrier derives from the relative rates of translocation 

and relaxation.
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 For transporters that do not display trans-acceleration (i.e. GLUT4), this would be 

explained by equal rates of relaxation and translocation. In this case, there would be no 

advantage to the presence of intracellular sugar, as the rates of carrier conformational 

change would be equal in the presence or absence of substrate. 

 In the context of the fixed-site carrier, trans-acceleration occurs if the presence of 

a sugar in either the cis- or trans- binding site accelerates the binding and thus exchange 

of another molecule of sugar at the opposite binding site, a process termed geminate 

exchange (239). This model assumes that occupancy of one binding site would affect the 

affinity or binding constant of sugar in the opposite binding site for carriers that display 

trans-acceleration. However, these affinities or binding constants would have to be equal 

in both sugar-binding sites in carriers that do not catalyze trans-acceleration.

 The basis of trans-acceleration can be understood in the context of the modified 

fixed-site carrier by assuming that, as in the simple carrier, relaxation is the rate-limiting 

step in the transport cycle. In this case, the translocation of one molecule of sugar into the 

cell (e.S2 to e.S1) would be as slow as the coupled relaxation of the neighboring empty 

carrier (e1 to e2) in the absence of intracellular sugar. However, sugar inside the cell 

would allow the second subunit to also translocate a molecule of sugar, thereby 

accelerating uptake by the first subunit. Thus the conformational change in one subunit is 

constrained (inhibited or accelerated) by those of the adjacent subunit. Here, the 

assumption would be the same as that of the simple carrier: in transporters that show 

trans-acceleration, the conformational relaxation step would be slower than translocation, 
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whereas the two rates would be equal in carriers which do not display accelerated 

exchange. 

Trans-Acceleration in Homeostasis

 In order to understand why some transporters might display this kinetic 

phenomenon and others may not, it is helpful to consider the possible advantage of trans-

acceleration. In simulations where the Vmax of sugar uptake and time to equilibration are 

modeled in the presence and absence of trans-acceleration (see Figure 1.6; (240) and A. 

Carruthers, unpublished), it is apparent that the half-time to equilibration is much shorter 

when trans-acceleration is extant. This could be a physiological advantage in situations 

where the amount of sugar is under tight control and a rapid equilibration would be 

desirable, e.g. at blood-tissue barriers such as the brain, placenta, retina, and lactating 

mammary gland. Indeed, such barriers show high expression of either GLUT1 (241), 

(242), (243), (244) and/or GLUT3 (245), (246), both of which are capable of catalyzing 

trans-acceleration. In contrast, in tissues where hormonal control can tune the amount of 

cell-surface transporter in order to affect sugar uptake rates, trans-acceleration would not 

present the same advantage. The liver, pancreas, skeletal muscle, and adipose tissue, 

which are the common sites of GLUT2 and GLUT4 expression (17), (247), are 

responsive to hormonal control. 

 Expression of a combination of transporters that can and cannot catalyze trans-

acceleration could be advantageous for tissues to adapt to sudden metabolic changes. For 
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Figure 1.6  Simulation of the effect of trans-acceleration on half-time to 
compartmental equilibration 

The simulated data for 5 mM sugar (Glc) on the outside, or luminal compartment (cyan; 
S1), taken up in zero-trans into a cell with no intracellular sugar (orange; Si), and no sugar 
present in the abluminal compartment (cyan; S2). As sugar is taken up into the cell (left 
graph) from the luminal compartment (ordinate) over time (abscissa), the half-time to 
equilibration decreases as the Vmax for exchange increases. This is observed when trans-
acceleration is set to increase 2- to 5-fold (Vee=2Vzt to Vee =5Vzt; Vee, Vmax for 
equilibrium exchange; Vzt, Vmax for zero-trans transport) over when no trans-acceleration 
is set (Vee = Vzt). In the second transport step (right graph), the sugar from inside the cell 
(Si) is exported in zero-trans into the abluminal compartment (S2), which is devoid of 
sugar. As sugar equilibrates to S2 (ordinate) over time (abscissa), the half-time to 
equilibration from S1 through the cell to S2 is reduced. When a 5-fold stimulation by 
trans-acceleration is set, the half-time to equilibration is reduced by ~70% (10 sec versus 
30 sec).

cell 

S1 Si S2 
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example, adipocytes and cardiomyocytes express both GLUT1 and GLUT4 (248), (76). 

Although total protein expression levels of GLUT4 are often much higher than that of 

GLUT1 (79), GLUT1 is the predominant glucose transporter at the cell surface during 

basal metabolic states. However, signaling by insulin or exercise induces rapid 

translocation of intracellular GLUT4 (173), (249), where it becomes the primary glucose 

transporter. This would quickly increase the ability to take up more glucose, with less 

emphasis on equilibration; in adipose tissue, for conversion and storage, and in 

cardiomyocytes, to respond to the increased metabolic demands of exercise. 

While other transporter characteristics such as affinity, capacity, and specificity for 

different substrates are critical in the tissue-specific and temporal changes in GLUT 

expression, it is possible that ability to catalyze trans-acceleration is a previously 

unknown factor.

Remaining Questions

 In the absence of a structure to clarify the mechanism of GLUT-mediated glucose 

uptake, evaluating the existing models for GLUT1 structure and transport mechanism 

based on experimental observation is the only way to expand our understanding. The 

proposed models must explain the observed data, and the experimental evidence can be 

used to refine the models further. Through iterative refinement of data interpretation and 

defining the next questions to ask experimentally, we may further elucidate the structure 

and function of glucose transporters. If or when these proteins are crystallized, the solved 
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structures will also be evaluated based on their agreement with the substantial body of 

evidence that has been collected about glucose transport over the last 60 years. The 

dangers of not reconciling transporter structure with the existing body of data on 

transporter biochemistry and behavior are vividly illustrated in the case of the ABC 

transporter MsbA, where an inverted structure was published and later retracted (250), 

(251).

 While the modified fixed-site carrier is consistent with much of the data available 

for GLUT-mediated transport, certain complexities, particularly those of erythrocyte 

transport, are not explained by any of the current models (225), (226), (234). This 

highlights the intrinsic difficulties in modeling the transport cycle based on kinetic data 

alone; the field awaits more detailed knowledge relating transporter structure and 

function.

 Although the kinetic phenomenon of trans-acceleration has been observed since 

the beginning of glucose transporter characterization, its mechanism is unknown. While a 

multitude of GLUT variants and point mutants have been tested for activity, expression, 

substrate and inhibitor specificity or affinity, localization, and structural dynamics, none 

of these has evaluated whether or not trans-acceleration is intrinsic to the carrier. If it is 

not, does trans-acceleration occur based on cellular environment, i.e. in response to a 

modulating co-factor? If trans-acceleration is sequence-based, are the required elements 

related to those determining substrate or inhibitor binding, or oligomerization of carrier 
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subunits? Can the identity of the necessary domain(s) be explained by the putative 

models of GLUT1 structure, or refine the current available models for glucose transport? 

 This thesis attempts to address these questions by evaluating systems and 

methodologies for measuring trans-acceleration, defining the domain(s) that are 

necessary and sufficient for trans-acceleration in Class I glucose transporters, and 

evaluating their potential role in the transport cycle within the current models for GLUT 

structure and transport.
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CHAPTER II

Detecting Changes in Trans-Acceleration of Transport Mediated by Endogenous 

GLUT1 and GLUT4 in 3T3-L1 Fibroblasts and Adipocytes

Abstract

 The human facilitative glucose transporter GLUT1 displays accelerated-exchange 

transport in the presence of intracellular sugar, while the related transporter GLUT4 does 

not. Comparison of these proteins may assist in understanding the basis for this 

phenomenon, known as trans-acceleration. Because the factor(s) governing the ability of 

a glucose transporter to catalyze trans-acceleration may be determined by cellular 

context, a system with endogenous expression of these GLUTs is ideal for comparison.  

Characterization of the 3T3-L1 fibroblast/adipocyte cell line confirmed that while 

GLUT1 is the basal transporter in fibroblasts, GLUT4 expression is significantly 

increased in adipocytes. In order to determine whether catalysis of trans-acceleration is 

intrinsic to GLUT sequence, it is necessary to first establish experimental conditions 

under which trans-acceleration can be measured. Analysis of transport 3T3-L1 cells 

confirmed that fibroblasts show GLUT1-mediated trans-acceleration of sugar uptake. 

However, upon differentiation, trans-acceleration persists in both basal and insulin-

stimulated adipocytes, a characteristic which is not displayed by GLUT4. This implies 
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the presence of a heterogenous population of cell-surface transporters and/or cells in 

various differentiation states. In addition, temporal mapping of the counterflow transient, 

a signature of carrier-mediated transport, was indicative of extremely rapid kinetics. 

Sugar uptake proved to be so rapid (t0.5 ~1-2 seconds) as to preclude accurate, 

reproducible comparisons of GLUT1- and GLUT4-mediated transport in 3T3-L1 cells. 

This study revealed that alternate approaches to transporter expression and methodologies 

to measure trans-acceleration are necessary to analyze sequence-based kinetic differences 

in GLUTs 1 and 4.

Introduction

 Since the very first kinetic characterizations of the ubiquitously expressed human 

GLUT1 glucose transporter in the 1950’s, it has been observed that the presence of sugar 

in trans results in an acceleration of unidirectional sugar uptake or efflux, termed trans-

acceleration (188), (206), (207). This phenomenon results in a 2- to 10-fold stimulation in 

the Vmax for the rate of exchange compared to the Vmax for the rate of zero-trans sugar 

uptake. The ability to catalyze trans-acceleration may present an advantage in certain 

physiological contexts in that it allows the equilibration of sugar on either side of the cell 

membrane to be reached more rapidly (Figure 1.6; (240) and A. Carruthers, unpublished).

 In contrast, the related human isoform GLUT4 does not show trans-acceleration 

in the presence of intracellular sugar. This has been observed experimentally in rat 
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adipocytes (209), (177). Unlike GLUT1, GLUT4 is mainly expressed in adipocytes and 

skeletal muscle. Despite differences in expression patterns, GLUT1 and GLUT4 are 

similar in length (492 and 508 amino acids, respectively) and are both Class I glucose 

transporters. While these transporters show a greater sequence conservation than most of 

the other 12 GLUT isoforms, they still only exhibit 68% sequence identity. Variations in 

sequence are primarily in the N-terminal half of the protein, the intracellular loop 6, and 

the cytoplasmic C-terminus. These disparities between GLUT1 and GLUT4 prompt the 

hypothesis that accelerated-exchange may be sequence-based.

 While a multitude of studies has employed mutations in GLUT1 TM domains, 

loops, and both termini, none has been used specifically to analyze whether trans-

acceleration is intrinsic to GLUT1 sequence. As such, many of these mutations are not 

conservative. Alanine- and cysteine-scanning mutagenesis have been used extensively to 

characterize which region(s) of GLUT1 are exposed to proteolysis or are critical for 

substrate/inhibitor binding (129), (135), (136), (153), (130). Some of these mutations are 

not possible to test because they prevent proper folding, expression, or function of the 

protein. Due to these complexities, an approach using more conservative sequence 

substitutions is desirable. Despite the variations in sequence between GLUTs 1 and 4, the 

TM-domain regions are the most highly conserved in both length and sequence (10). 

Thus the substitution of TM regions among these transporters would increase the 

likelihood of proper folding, TM insertion into the membrane, and functional transport. 
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 As the glucose transporter which was first identified and cloned, more is known 

about the kinetic characteristics of GLUT1 (8), (252) than the other human glucose 

transporters. Due to its potential role in diabetes as an insulin-sensitive transporter, 

GLUT4 kinetics and expression also have been studied thoroughly. The affinities for 2-

DG transport by GLUT1 and GLUT4 in skeletal muscle have been shown to be 

indistinguishable (Km ~10 mM; (200)). While some studies report that GLUT4 has a ~4-

fold higher affinity for 3-MG than GLUT1 (191), (201), (202), other comparisons of Km 

for 3-MG have shown a similar range for both transporters (~4-6 mM; (209), (204), 

(205)). In addition, the ability to induce large amounts of GLUT4 expression at the 

plasma membrane by insulin stimulation provides a tunable expression system that could 

aid in transport measurements.

 Despite the sequence disparity between GLUTs 1 and 4, it is possible that trans-

acceleration is governed by a phenomenon external to the protein. For example, 

interaction with modulating co-factors, perhaps even in specific cellular contexts, may 

play a role. Thus it would be ideal to establish methodologies for measuring the presence 

and absence of trans-acceleration in cells with endogenously expressed transporters. 

 The obvious choice for comparing GLUT1 and GLUT4 kinetics in a system 

where both are expressed would be skeletal muscle or adipose tissue (249), (76). Because 

GLUT1 is the basal transporter used in the majority of tissues, its ability to catalyze trans-

acceleration should be evident in the basal metabolic state, provided it is the dominant 

GLUT isoform expressed. GLUT4 contains targeting sequences that keep the transporter 
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sequestered in intracellular storage compartments under basal conditions (167), (168), 

(169), (170), (171). However, stimulation by insulin and/or exercise affects trafficking 

pathways within the cell. This results in the rapid translocation of GLUT4-containing 

vesicles to the plasma membrane, where GLUT4 becomes the primary transporter (166). 

This would provide a unique opportunity to compare the presence and absence of trans-

acceleration in transport mediated by GLUT1 and GLUT4, respectively, in the same 

system where both are endogenously expressed. 

 Because expression of GLUT1 or GLUT4 can be theoretically controlled by 

cellular differentiation, adipose tissue offers an experimental advantage over skeletal 

muscle for this purpose. Although insulin stimulates both cell types, the greatest amount 

of GLUT4 translocation in muscle cells is observed with a combination of insulin and 

contraction (200), (253). In contrast, high levels of GLUT4 translocation to the cell 

surface in adipocytes only requires the addition of insulin. The murine fibroblast cultured 

cell line 3T3-L1 has been used for decades to study GLUT4 trafficking and insulin 

responsiveness, and is thus well characterized (254), (255), (256), (257).

 While it is the ultimate goal of the study to compare human glucose transporters, 

alignments of murine and human isoforms show high sequence conservation. Mouse 

GLUT1 sequence is 97% homologous to human GLUT1, with a difference of only 17 

amino acids; while mouse GLUT4 is 95% identical to the human isoforms, with 24 

disparate residues. 
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 Here we characterize expression levels of GLUT1 and GLUT4 mRNA in 3T3-L1 

fibroblasts and adipocytes using reverse transcriptase (RT) and quantitative PCR (qPCR), 

and protein expression by Western blot. We then establish parameters for kinetic 

measurements of 3-MG transport by performing time courses and dose-responses. These 

experiments produce transport data that deviate from Michaelis-Menten behavior, 

suggesting that we did not measure initial rates of transport. Changing the inhibitor we 

used to quench transport and shifting our measurements to earlier time points indicated 

that we could measure counterflow, which we mapped over several time points to 

confirm. The slope of the counterflow measured in fibroblasts indicated the presence of 

GLUT1-mediated trans-acceleration. However, trans-acceleration persisted in insulin-

stimulated adipocytes, indicating that either background GLUT1 expression levels were 

too high or a mixed population of fibroblasts and adipocytes precluded the detection of 

GLUT4-mediated loss of trans acceleration. In addition, a time course of 3-MG uptake in 

stimulated adipocytes was even more rapid than transport observed in fibroblasts. These 

data suggest that 3-MG transport in 3T3-L1 cells is too rapid to compare kinetics of 

stimulated adipocytes and basal fibroblasts experimentally, even at ice temperature. 

Experimental Procedures

Materials

 Frozen 3T3-L1 cells of passage 3 were obtained from the laboratory of Dr. 

Michael Czech, Program in Molecular Medicine, University of Massachusetts Medical 
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School, Worcester. DMEM, DPBS, penicillin/streptomycin, trypsin, Bis-Tris gels and 

MES buffer were obtained from Invitrogen. FBS was obtained from HyClone. All 

primers were purchased from Integrated DNA Technologies. RNeasy, Qiashredder and 

One-Step RT-PCR kits were from Qiagen. iScript One-Step PCR kit with SYBR green 

was purchased from BioRad. PVDF membranes were obtained from ThermoFisher. 10% 

bovine serum albumin was from American Bioanalytical. Super Signal Pico West and 

micro-BCA kits were from Pierce. Protease inhibitor cocktail tablets were from Roche. 

[3H]-3-O-methyl-D-glucose was purchased from MP Biomedical. Insulin, SDS, 3-MG, 

maltose, CCB, phloretin, methyl-3-isobutyl xanthine (IBMX), dexamethasone (DMT) 

and all other chemicals were purchased from Sigma.

Solutions

 Growth medium was DMEM containing 10% FBS, 1% penicillin/streptomycin. 

Freezing medium was growth medium containing 5% DMSO. Cell lysis buffer consisted 

of DPBS, 1% SDS plus protease inhibitiors with EDTA. TBS contained 20 mM Tris base, 

135 mM NaCl, pH 7.6. Sample buffer consisted of 0.5 M Tris-Cl, pH 6.8, 40% (v/v) 

glycerol, 8% SDS, bromophenol blue, and 150 mM DTT. Stop solution consisted of 

either 10 µM CCB and 100 µM phloretin or 80 mM maltose, as indicated.

Antibodies

 A custom-made (New England Peptide) affinity-purified rabbit polyclonal 

antibody raised against a peptide corresponding to GLUT1 C-terminal residues 480-492 

was used at 1:10,000 dilution as described previously (152). A goat polyclonal anti-
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GLUT4 C-terminal antibody (Santa Cruz sc-1608) was used at 1:1,000 dilution. 

Horseradish peroxidase-conjugated goat anti-rabbit and donkey anti-goat secondary 

antibodies (Jackson ImmunoResearch) were used at 1:50,000 and 1:30,000 dilution, 

respectively.

Tissue Culture

 3T3-L1 fibroblasts were prepared by thawing the original vial of P3 cells into 

2x150mm2 plates with growth medium. After 48 hours, these were split at a ratio of 1:4. 

Cells were dissociated from the dish for passage or storage by incubating with 0.5% 

trypsin for 5 min at 37°C, centrifuging for 5 min at 950 rpm, and resuspension in medium 

for growth.

 A fresh vial of 3T3-L1 fibroblasts was thawed each week. These were grown in 

150 mm2 dishes at 37°C, 5% CO2 and fed every 48 hours with growth medium. When 

confluent, fibroblasts were dissociated from the plate by incubation with 0.5% trypsin-

EDTA for 5 minutes and split at 1:4 and/or used for experiments after 4 days of growth 

and feeding. Differentiation into adipocytes was performed as described previously (258). 

Briefly, 0.5 µg/ml insulin, 0.5 mM IBMX and 0.25 µM DMT were added to fibroblasts 

on day 7. Differentiating cells were fed with normal growth medium on day 10 and day 

12. Adipocytes were used for experiments on or after day 14, and the change in cell 

morphology was verified by phase-contrast microscopy prior to all experiments. 

 For transport experiments, all cells were transferred to 12-well plates at least 24 

hours prior to transport measurements. When indicated, adipocytes were stimulated with 
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100 nM insulin during the final 20 minutes of the 2-hour serum starve at 37°C prior to 

performing transport measurements.

Endpoint RT-PCR

 Total RNA was isolated from 3T3-L1 fibroblasts or adipocytes using the RNeasy 

kit and Qiashredder. End point RT-PCR was performed as per the One-Step RT PCR kit 

instructions using mouse GLUT1- and GLUT4-specific primers (see Appendix, Table A2; 

primers were obtained from Dr. Anthony Cura). RT-PCR products were resolved on a 

1.5% agarose gel in TAE buffer. Bands were visualized by ethidium bromide staining 

under UV light on a FujiFilm LAS 3000 and analyzed using FujiFilm MultiGauge 

software. 

Quantitative RT-PCR

 Expression levels of GLUTs 1 and 4 were measured by qPCR using the iScript 

One-Step PCR kit with SYBR green. Reactions were performed according to the kit 

protocol using 100 ng total RNA isolated using the RNeasy kit and Qiashredder, and 

using mouse GLUT1- and GLUT4-specific qPCR primers (see Appendix, Table A2; 

primers were obtained from Dr. Anthony Cura). Samples were run in duplicate on an MJ 

Research PTC-200 Peltier Thermal Cycler with a Chromo4 real time PCR detector 

running Opticon Monitor 3 software (Bio-Rad). Results were analyzed by using the delta-

delta Ct method (259) and normalized to an EIF-1α control.
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Western Blotting

 Cells were trypsinized, pelleted, washed with DPBS, lysed in cell lysis buffer, and 

protein concentration was assessed using a micro-BCA kit. Lysates were normalized for 

total protein concentration and resolved by SDS-PAGE on a 10% Bis-Tris gel in MES 

buffer. Gels were transferred onto PVDF membranes, blocked with 10% bovine serum 

albumin in TBS-T, probed with primary antibody overnight at 4°C, probed with 

secondary antibody for 1 hour at room temperature, and developed using Super Signal 

Pico West Chemiluminescent substrate. Blots were imaged on a FujiFilm LAS-3000 and 

relative band densities were quantitated using ImageJ software.

3-MG Transport and Time Course

 3-MG transport was performed as described previously (234). Briefly, 12-well 

plates of confluent 3T3-L1 cells were serum- and glucose-starved for 2 hours at 37°C in 

FBS- and penicillin/streptomycin-free DMEM lacking glucose. Cells were washed with 

0.5 mL DPBS at 4°C, then exposed to 0.4 mL of uptake solution containing the indicated 

concentration of cold 3-MG plus 2.5 µCi/ml [3H]-3-MG for the indicated time point at 

4°C. Uptake was stopped by addition of 1 mL ice-cold stop solution. Cells were washed 

twice with ice-cold stop solution and extracted with SDS extraction buffer. Total protein 

concentration was analyzed in duplicate using a micro-BCA kit. Each sample was 

counted in duplicate by liquid scintillation spectrometry. Each condition was performed 

in triplicate.
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Zero-Trans, Equilibrium Exchange and Infinite-Trans 3-MG Uptake Measurements

 Zero-trans sugar uptake describes uptake of sugar into cells lacking intracellular 

sugar. This was achieved by using no glucose or sugar analogs during the 2 hour serum-

starve and PBS washes described above. Equilibrium exchange uptake describes equal 

amounts of sugar inside and outside of the cell. This was achieved by pre-loading cells 

with the same amount of 3-MG (5-40 mM) contained in the uptake medium for that 

condition, a concentration which was kept constant throughout the 2 hour serum starve 

and PBS washes prior to uptake. Infinite-trans uptake describes uptake into cells that 

have been pre-loaded with a saturating amount of sugar. This was achieved by pre-

loading the cells with either 40 or 80 mM 3-MG, as indicated, during the 2 hour serum 

starve and PBS washes.

Transport Data Analysis 

 All data analysis was performed using GraphPad Prism (La Jolla, CA, v 5.0). For 

sugar uptake experiments, background counts were subtracted from all samples and 

uptake, v, was normalized to [total protein]/well. [3H]-3-MG uptake (DPM/µg) was then 

converted to mol/µg protein/min by using the measured specific activity of the uptake 

solution. For dose-response experiments, sugar uptake was fitted to the Michaelis Menten 

equation (Equation 2.1):
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by non-linear regression analysis, which yielded the values for Vmax and Km. 

For experiments studying the inhibition of uptake by maltose, sugar uptake was fitted to 

the inhibition equation (Equation 2.2):

by non-linear regression analysis, where yo is the y-intercept ([maltose] = 0) and span is 

the distance between the maximal and minimal values for sugar uptake. The inhibition 

constant (Kiapp) for transport inhibition by maltose was extracted from the fit.

Results

Differentiation and GLUT1/GLUT4 expression in 3T3-L1 fibroblasts and adipocytes 

 In order to assess whether the 3T3-L1 cell line could be used to measure GLUT1- 

and GLUT4-mediated transport, we first had to characterize the changes in expression of 

these transporters during differentiation of fibroblasts into adipocytes. Differential 

interference contrast (DIC) microscopy was used to compare the morphology of live, 

unmodified pre- and post-differentiation cells (Figure 2.1A and B). While 

undifferentiated 3T3-L1 cells have a typical fibroblast morphology, this changes when 

the same cells are examined 1 week after culturing in the presence of IBMX, DMT and 

insulin. The adipocyte morphology (260) is characterized by accumulation of fat droplets
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Figure 2.1  Morphology and expression of GLUT1 and GLUT4 mRNA in 3T3-L1 
fibroblasts and differentiated adipocytes

A, Live fibroblasts were imaged by DIC microscopy at 10x. B, Live adipocytes on day 7 
post-differentiation were visualized using DIC microscopy at 10x. C, Total RNA extracts 
from fibroblasts (F) and adipocytes (A) were used as a template for RT-PCR using 
primers specific to mouse GLUT1 (product size: 515 bp) and GLUT4 (product size: 444 
bp). The products were resolved on a 1.5% agarose gel and visualized using ethidium 
bromide.
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in the cytoplasm, which results from increased triglyceride synthesis after differentiation 

(261).

 Total RNA was extracted from both fibroblasts and differentiated adipocytes and 

screened for GLUT1 and GLUT4 mRNA by RT-PCR (Figure 2.1C). As expected, both 

fibroblasts and adipocytes show expression of GLUT1 and GLUT4 mRNA. The relative 

amount of message was examined using qPCR (Figure 2.2A). Analysis by 

qPCR revealed that GLUT4 mRNA expression was only 40% of GLUT1 mRNA 

expression in fibroblasts. However, upon differentiation into adipocytes, the expression 

of GLUT4 message was increased to 4000% when compared to GLUT1 message. 

 In order to verify that similar changes occurred in protein levels, whole cell 

lysates of both fibroblasts and adipocytes were analyzed by Western blot. When probed 

with a C-terminal anti-GLUT1 antibody (Figure 2.2B), a ~55 kDa band of GLUT1 is 

detected in both fibroblasts and adipocytes, although its expression is more abundant in 

fibroblasts. However, when probed with a C-terminal anti-GLUT4 antibody (Figure 

2.2C), a ~55 kDa GLUT4 band is detected in adipocytes, but not in fibroblasts. The 

combination of morphological changes and increase in GLUT4 mRNA and protein 

expression over GLUT1 confirmed the successful differentiation of 3T3-L1 fibroblasts 

into adipocytes.
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Figure 2.2  Comparative expression of GLUT1 and GLUT4 in 3T3-L1 fibroblasts 
and adipocytes  

A, Quantitative RT-PCR analysis of fibroblast and adipocyte total RNA cell extracts using 
qPCR primers specific to mouse GLUT1 and GLUT4. Results are normalized to GLUT1 
message expression and plotted as relative expression (ordinate) for each cell extract 
(abscissa). Samples were run in duplicate on 2 separate occasions. The significance of the 
difference between GLUT4 (shaded bars) and GLUT1 (empty bars) mRNA relative 
expression was computed using an unpaired, 2-tailed Student’s t-test yielding ** P ≤ 
0.01; *** P ≤ 0.001. B, Western blot analysis of GLUT1 protein expression in whole cell 
lysates fibroblasts and adipocytes using a GLUT1 C-terminal antibody (~55 kDa). C, 
Western blot analysis of GLUT4 protein expression in whole cell lysates from fibroblasts 
and adipocytes using a GLUT4 C-terminal antibody (~55 kDa). 5-20 µg of lysate was 
loaded beside a control of GLUT1 purified from human erythrocytes.
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Initial characterization of 3-MG uptake in fibroblasts

 In order to establish an appropriate time point during the linear phase of uptake 

for future transport experiments, we performed a time course over 10 minutes of 5 mM 3-

MG uptake in fibroblasts at 4°C (Figure 2.3A). Previous experiments in our laboratory 

have indicated that 3-MG transport in other murine cell lines is rapid, even at ice 

temperature (182). In 3T3-L1 fibroblasts, the cells were equilibrated by 2 minutes. To 

make an initial comparison of whether transport rates were stimulated by intracellular 

sugar, we chose a time point of 1 minute and performed dose-responses in cells that were 

either pre-loaded or devoid of intracellular sugar (Figure 2.3B). 

 To examine uptake in the absence of intracellular sugar (zero-trans), fibroblasts 

were depleted of sugar for the 2 hours prior to uptake. To examine transport in the 

presence of intracellular sugar (infinite-trans), cells were pre-loaded with a saturating 

concentration of sugar (80 mM 3-MG). While comparison of 5-40 mM 3-MG uptake 

under zero- and infinite-trans conditions did show a stimulation (trans-acceleration) of 

sugar uptake rates at the 20 mM and 40 mM doses of extracellular 3-MG, the dose-

response of pre-loaded cells was linear. This indicates that either 3MG transport is an 

extremely low affinity process or initial rates were not measured, and the resulting 

transport does not provide accurate values for Vmax or Km. Indeed, when the zero-trans 

uptake data are fitted with the Michaelis-Menten equation (Equation 2.1), the calculated 

Vmax is 219 ± 183 pmol/µg/min and the Km is 133 ± 137 mM. This is much higher than the 
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Km for 3-MG reported in other systems, which is 4-20 mM (204), (205), (192), (201), 

(202). While the calculated Vmax for the infinite-trans dose-response is higher than under 

zero-trans conditions (6960 ± 3420 pmol/µg/min), the Km (2958 ± 14682 mM) is not 

reasonable. 

 These results indicated that an earlier time point was necessary to perform 

accurate dose-responses of 3-MG uptake. While the disparity between intra- and 

extracellular sugar in infinite-trans experiments (80 mM vs 5-40 mM 3-MG) can cause 

changes in cell volume (262), we sought to avoid these complications by ensuring that all 

uptake solutions were osmotically balanced with sucrose, which is not a substrate for 

GLUT-mediated transport. However, the control condition in the time course (Figure 

2.3A) showed increasingly negative counts with time of incubation with cytochalasin B 

(CCB), a commonly used GLUT-specific inhibitor. This implied that the choice of CCB 

for quenching uptake could be causing increased cell permeability and could contribute to 

difficulty with data analysis. This led us to consider whether a different inhibitor, 

maltose, would be a better transport inhibitor to use for these assays.

Comparison of maltose and CCB inhibition of transport

 Maltose is a competitive inhibitor of GLUT-mediated uptake, as it binds at the 

exofacial site (28). When used at high concentrations, it can rapidly inhibit uptake of 

sugar or sugar analogs. We chose to compare inhibition of 3-MG uptake by 80 mM 

maltose or 10 µM CCB (Figure 2.4A). In order to test whether either inhibitor caused 
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leaking of cellular contents over time, we pre-incubated fibroblasts with each inhibitor 

for 0 to 120 seconds prior to adding 5 mM 3-MG uptake, and then processed the cells 

after 1 minute. The 0 second time point indicates that both inhibitor and uptake solution 

were added at the same time. For comparison, uptake was measured in control wells with 

no inhibitor until uptake had proceeded for 1 minute. While this assay was performed at 

4°C, we also included a pre-incubation point at 37°C for comparison. Whereas CCB 

inhibition of 3-MG transport showed a higher background and was variable over the pre-

incubation times tested, maltose showed low background and a very reproducible 

inhibition of 3-MG transport. These data could partially be explained by the 

comparatively higher off-rate of CCB compared to maltose (28). 

 In order to ensure we were using an appropriately high concentration of maltose 

for inhibition in future experiments, we performed a dose-response of maltose inhibition 

of 3-MG transport (Figure 2.4B). We examined the amount of 10 mM 3-MG uptake at 5 

seconds in fibroblasts when simultaneously exposed to 0 to 100 mM maltose. These 

results showed a Ki(app) of ~6 mM for maltose, which is in agreement with what has been 

reported previously (Ki(app) ~6 mM (28)). This confirmed that the use of 80 mM maltose 

was sufficient for transport inhibition.
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Figure 2.3 Initial characterization of 3-MG transport in 3T3-L1 fibroblasts

A, Time course of 5 mM 3-MG zero-trans uptake in fibroblasts at 4°C. Amount of uptake 
of 3[H]-3-MG was normalized to total protein concentration (ordinate) and plotted for the 
length of time of uptake (abscissa). Samples were either incubated with 10 µM CCB 
from the start of the time course (●)	
  or stopped with 10 µM CCB at the indicated time 
point (○). Data are plotted as mean ± SEM for n=2 assays. Curves drawn through the data 
were computed by nonlinear regression assuming that uptake is described by Equation 
2.1. B, Dose response of 3-MG uptake at 1 minute in fibroblasts at 4°C. The rate of 
uptake (ordinate) was plotted for uptake of 5-40 mM 3-MG (abscissa) in cells depleted 
of intracellular sugar (zero-trans; (○)) or cells pre-loaded with 80 mM 3-MG (infinite-
trans; (●)). For infinite-trans, 5-40 mM 3-MG uptake solutions were balanced with 
sucrose to 80 mM. Uptake was stopped with 10 µM CCB and 100 µM phloretin. Data are 
plotted as mean ± SEM for n=3 assays. Curves drawn through the data were computed by  
nonlinear regression assuming that uptake is described by Equation 2.1.
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Figure 2.4 Characterization of maltose vs CCB inhibition of 3-MG uptake in 
  fibroblasts 

A, The rate of uptake of 5 mM 3-MG (ordinate) is plotted against the time of pre-
incubation (abscissa) with either 10 µM CCB or 80 mM maltose to inhibit transport, at 
4°C unless otherwise noted. The non-inhibited uptake of 5 mM 3-MG, stopped with 
either CCB or maltose after 1 minute, is shown (Ctrl). All following samples had 
inhibitor added for the time indicated, then 5 mM 3-MG, and samples were aspirated and 
processed after 1 minute. B, The inhibition of 10 mM 3-MG uptake (ordinate) at 5 
seconds in fibroblasts at 4°C is shown for 0-100 mM maltose (abscissa). The curve 
drawn through the data was computed by nonlinear regression assuming that inhibition is 
described by Equation 2.2. The resulting analysis yields parameters of Ki= 5.9 ± 3.4 mM 
with an R2 = 0.8916.
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Characterization of 3-MG transport in fibroblasts using maltose

 Because our previous time course with CCB and the linear infinite-trans results 

had indicated a rapid equilibration, we chose to revisit the time course of 5 mM 3-MG 

zero-trans uptake at shorter time points and using maltose to stop transport (Figure 2.5A). 

When uptake of 3-MG is analyzed over the course of 1 minute, it is apparent that 

equilibration is nearly complete by 10 seconds, which is far faster than our previous dose-

this set of experiments, we chose to compare equilibrium exchange (pre-loading the cells

with 5-20 mM 3-MG, such that intra- and extra-cellular [sugar] were equal) to zero-trans, 

so that the higher concentrations of sugar (40-80 mM) employed in the previous 

experiments could be avoided. While dose-responses under these conditions were no 

longer linear and provided more reasonable values for Km (~26-52 mM), there was no 

stimulation of Vmax with the presence of intracellular sugar. We reasoned that perhaps the 

the time point was still too long and that rapid equilibration was preventing the detection 

of trans-acceleration.

Evaluation of 3-MG transport in fibroblasts at a 2 second time point

 As a proof-of-principle, we chose to compare infinite-trans and zero-trans uptake 

of 10 mM 3-MG at 2 and 5 seconds, respectively (Figure 2.6A). While there is no 

stimulation of uptake with intracellular sugar (40 mM pre-loaded 3-MG) at 5 seconds, 

there is an approximate 2-fold stimulation of uptake observed at 2 seconds when 

intracellular sugar is present. This confirmed that our previous time points were too long 

to measure trans-acceleration. 
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Figure 2.5  Characterization of 3-MG uptake in fibroblasts using modified stop 
  conditions 

A, Time course of 5 mM 3-MG zero-trans uptake in fibroblasts at 4°C. Amount of uptake 
of 3[H]-3-MG was normalized to total protein concentration (ordinate) and plotted for the 
length of time of uptake (abscissa). Samples were stopped with 80 mM maltose at the 
time points indicated. The curve drawn through the data was computed by nonlinear 
regression assuming that uptake is described by Equation 2.1, with R2 = 0.9643. B, Dose 
response of 3-MG uptake at 5 seconds in fibroblasts at 4°C. The rate of uptake (ordinate) 
was plotted for uptake of 5-20 mM 3-MG (abscissa) in cells depleted of intracellular 
sugar (zero-trans; (○)) or cells pre-loaded with 5-20 mM 3-MG (equilibrium-exchange, 
(●)). Uptake was stopped with 80 mM maltose. Data are plotted as mean ± SEM for n=2 
assays. Curves drawn through the data were computed by nonlinear regression assuming 
that uptake is described by Equation 2.1. The resulting analysis yields parameters of Vmax 
= 440.4 ± 32.9 pmol/µg/min, Km = 26.5 ± 3.1 mM, with R2 = 0.9983 for zero-trans 3-MG 
uptake; Vmax = 643.3 ± 654.7 pmol/µg/min, Km = 51.6 ± 68.4 mM, with R2 = 0.9321 for 
equilibrium exchange 3-MG uptake.
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Figure 2.6  Analysis of the effect of intracellular sugar on 3-MG uptake in 
fibroblasts at 2 second uptake measurements 

A, The uptake of 10 mM 3-MG (ordinate) at 2 or 5 seconds (abscissa) in fibroblasts with 
no intracellular sugar (zero-trans; (○)) or pre-loaded with 40 mM 3-MG (infinite-trans; 
(●)). Data are plotted as mean ± SEM for n=2 assays. B, Dose-response of the rate of 
uptake (ordinate) of 5-20 mM 3-MG (abscissa) in fibroblasts with 0 intracellular sugar 
(zero-trans; (○)) or pre-loaded with 5-20 mM 3-MG (equilibrium exchange, (●)). All 
uptake was performed at 4°C and stopped with 80 mM maltose. Curves drawn through 
the data were computed by nonlinear regression assuming that uptake is described by 
Equation 2.1. The resulting analysis yields parameters of Vmax = 150.5 ± 130.8 pmol/µg/
min, Km = 13.5 ± 23.2 mM, with R2 = 0.7431 for zero-trans 3-MG uptake; Vmax = 345.0 ± 
47.5  pmol/µg/min, Km = 6.4 ± 2.4 mM, with R2 = 0.9599 for equilibrium exchange 3-
MG uptake.
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 We then repeated the dose-response of 5-20 mM 3-MG uptake under zero-trans 

(ZT) and equilibrium-exchange (EE) conditions at 2 seconds (Figure 2.6B). This 

experiment showed trans-acceleration at each dose of 3-MG uptake measured, with a 2.3-

fold increase in Vmax (ZT Vmax = 150.5 ± 130.8 pmol/µg/min; EE Vmax = 345.0 ± 47.5 

pmol/µg/min). In addition, the calculated Km for each experiment was within the range of 

reported values (ZT Km = 13.5 ± 23.2 mM; EE Km = 6.4 ± 2.4 mM). These results 

confirmed that we were able to measure GLUT1-mediated trans-acceleration in 

fibroblasts. However, these rapid uptake measurements proved to be difficult to 

reproduce, and prompted us to ask whether we were still underestimating trans-

acceleration at 2 seconds. The ability to detect trans-acceleration at 2 seconds, yet not at 5 

seconds, indicated that we might have been measuring the counterflow transient at 2 

seconds, which would disappear due to equilibration by 5 seconds.

Mapping the counterflow transient in fibroblasts

 While counterflow can occur when trans-acceleration does not, in such a case the 

initial velocity of uptake will be the same as that of zero-trans uptake (Figure 2.7A). 

However, when counterflow is measured in a system where trans-acceleration occurs, this 

will be reflected by an increase in the slope of the initial rate of transport over the slope 

of zero-trans uptake. When we performed uptake of 10 mM 3-MG at 1-second intervals 

between 1 and 5 seconds under infinite-trans and zero-trans conditions (Figure 2.7B), this 
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Figure 2.7 Measuring counterflow of 3-MG uptake in 3T3-L1 fibroblasts and 
  adipocytes

A, Example simulations of counterflow by carriers which do and do not catalyze trans-
acceleration. The amount of uptake represented by accumulated intracellular label (Li; 
ordinate) is graphed over time (abscissa) under zero-trans (black line) and pre-loaded 
conditions where trans-acceleration is allowed (blue line) or is not allowed (red line). B, 
The ratio of intracellular sugar over extracellular sugar (ordinate) is plotted for the first 6 
seconds of 10 mM 3-MG uptake (abscissa) in fibroblasts depleted of intracellular sugar 
(zero-trans; (○)) or pre-loaded with 40 mM 3-MG (infinite-trans; (●)). All uptake was 
performed at 4°C and stopped with 80 mM maltose.
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is exactly what we observed. While the initial time points (1 and 2 seconds) show the 

stimulation of uptake we observe with intracellular sugar, equilibration is reached rapidly 

and the stimulation over zero-trans is undetectable by 3 seconds. In addition, we can see 

from the slope of the fit between 0 and 2 seconds that the initial velocity is much greater 

under infinite-trans conditions, indicative of trans-acceleration.  

 Indeed, the fit of the infinite-trans data indicates that trans-acceleration is even 

underestimated at a 1-second measurement. Because these 1 to 5 second measurements 

were so rapid, we sought to confirm that counterflow was actually occurring and not an 

artifact of the experimental conditions, particularly variations in temperature. To test this,

we compared uptake of 10 mM 3-MG at 1 and 5 seconds for fibroblasts that had been 

pre-incubated on ice for 5-20 minutes prior to performing uptake (Figure 2.8). This 

experiment showed the presence of counterflow at 1 second with no dependence on the 

amount of time at 4°C. In addition, we varied the order in which 1-5 second uptakes were 

performed over several assays, with no change in results. This confirmed that we were 

able to measure the counterflow transient at 1 second of uptake.

Characterization of 3-MG uptake in basal and insulin-stimulated adipocytes

 In order to assess whether we would be able to make comparative measurements 

in adipocytes, we performed a time course of 10 mM 3-MG uptake (Figure 2.9A). This 

was done in both basal (2 hour serum starve) and insulin-stimulated (2 hour serum starve 

with 100 nM insulin in the final 20 minutes) adipocytes to test whether stimulation would 
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Figure 2.8 Analysis of duration at ice temperature and effect on counterflow 
measurements

The amount of uptake (ordinate) is plotted at 1 and 5 seconds (abscissa) for 10 mM 3-
MG uptake in fibroblasts pre-loaded with 40 mM 3-MG, which were pre-incubated for 
5-20 min at 4°C prior to performing uptake. All uptake was stopped with 80 mM maltose.
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Figure 2.9  Characterization of 3-MG transport in basal and insulin-stimulated 
  3T3-L1 adipocytes

A, Time course of 10 mM 3-MG uptake in basal or insulin-stimulated adipocytes. 
Amount of uptake of 3[H]-3-MG was normalized to total protein concentration (ordinate) 
and plotted for the length of time of uptake (abscissa) for basal (○) or insulin-stimulated 
(●) adipocytes. Data are plotted as mean ± SEM for n=2 assays. Curves drawn through 
the data were computed by nonlinear regression assuming that uptake is described by 
Equation 2.1, with R2 = 0.9643 for the fit of uptake under basal conditions and R2 = 
0.5748 for the fit of uptake under insulin-stimulated conditions. B, Dose response of 3-
MG uptake at 2 seconds in basal adipocytes. The rate of uptake (ordinate) was plotted for 
uptake of 5-20 mM 3-MG (abscissa) in adipocytes depleted of intracellular sugar (zero-
trans; (○)) and adipocytes pre-loaded with 40 mM 3-MG (infinite-trans; (●)). C, Dose 
response of 3-MG uptake at 2 seconds in insulin-stimulated adipocytes. The rate of 
uptake (ordinate) was plotted for uptake of 5-20 mM 3-MG (abscissa) in adipocytes 
depleted of intracellular sugar (zero-trans; (○)) and adipocytes pre-loaded with 40 mM 3-
MG (infinite-trans; (●)). All uptake was performed at 4°C and stopped with 80 mM 
maltose. The lines drawn through data in B and C were computed by nonlinear regression 
analysis assuming that uptake is described by Equation 2.1.
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increase the rate of transport, as expected. Indeed, we observed that over 60 seconds, both 

the amount of uptake and the initial rate at which it occurred was faster in stimulated 

adipocytes. The overall Vmax for uptake is higher in stimulated adipocytes, and the entire 

time course curve is shifted to the left, indicating faster equilibration.

 While this implied that transport would again be too rapid to measure accurately 

in adipocytes, we performed a dose-response of 3-MG uptake at 2 seconds and compared 

this in basal and stimulated adipocytes (Figure 2.9B-C). Indeed, both sets of dose-

responses are linear, indicating that transport at 2 seconds is even more rapid than in 

fibroblasts. Despite an inability to extract meaningful Km and Vmax values from these data, 

the results in both basal and insulin-stimulated adipocytes show that trans-acceleration is 

still present under infinite-trans versus zero-trans conditions.

 To confirm this observation, we wanted to test whether we could measure 

counterflow in adipocytes. When we mapped uptake under infinite-trans conditions over 

1-5 seconds (Figure 2.10), we did indeed observe counterflow in both basal and insulin-

stimulated adipocytes. As we found in the dose-response experiments, the amount of 

uptake in stimulated adipocytes was greater than in basal adipocytes over the first 2 

seconds of uptake. The sharp peak of the counterflow transient and its rapid equilibration 

by 3 seconds is similar to the counterflow observed in fibroblasts, supporting that 

GLUT1-mediated trans-acceleration is operant in these cells.
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Counterflow of 3-MG Uptake in Basal and Stimulated 
3T3-L1 Adipocytes
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Figure 2.10 Counterflow of 3-MG uptake in basal and insulin-stimulated 
adipocytes

Amount of uptake of 3[H]-3-MG was normalized to total protein concentration (ordinate) 
over the first 5 seconds of 10 mM 3-MG uptake (abscissa), which is plotted for 
adipocytes pre-loaded with 40 mM intracellular 3-MG under basal (●) and insulin-
stimulated () conditions. All uptake was performed at 4°C and stopped with 80 mM 
maltose.
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Discussion

 After initial characterization, the 3T3-L1 system appeared ideal for our proof-of-

concept studies. Not only did we see successful differentiation of fibroblasts into 

adipocytes, but the relative expression changes from predominantly GLUT1 to 

predominantly GLUT4 seemed promising for investigating changes in trans-acceleration. 

However, this proved to be more complicated than anticipated.

 Although we successfully measured GLUT1-mediated trans-acceleration in 

fibroblasts, the extremely rapid time points necessary to detect this stimulation were 

difficult to reproduce. This raised the possibility that we would not be able to accurately 

measure transport in insulin-stimulated adipocytes, where we expected to see more rapid 

transport. This assumption was based on experimental evidence in 3T3-L1 adipocytes 

showing that insulin stimulation resulted in both an increase in total membrane protein 

and a 2- to 20-fold stimulation of transport over basal conditions (164), (263). We 

confirmed this in our time course experiment, which showed that 3-MG uptake was 

approximately twice as rapid in stimulated over basal adipocytes. 

 We also were able to measure and map counterflow in fibroblasts. Counterflow 

refers to the transient increase in intracellular accumulation of labeled sugar prior to 

equilibration. This phenomenon is based upon the presence of cold intracellular sugar 

acting as a competitive inhibitor to exit of the initially accumulating labeled sugar, which 

then equilibrates over time.  While the presence of counterflow is merely indicative of 

81



carrier-mediated transport (29), (186), the slope of the counterflow can be used to 

determine the presence of trans-acceleration. However, the fit of the experimental 

counterflow data indicated that even at 1 second measurements, we were likely 

underestimating the magnitude of the counterflow transient peak. This further supported 

our concerns that transport in 3T3-L1 cells was extremely rapid and difficult to measure.  

 Despite this technical issue, we were able to use our map of counterflow to show 

GLUT1-mediated trans-acceleration in fibroblasts. By comparing the initial rate of influx 

in zero-trans uptake versus pre-loaded conditions, we observed that the rate of 

counterflow is faster than the rate of zero-trans uptake, showing stimulation of transport. 

The same characteristics were retained in counterflow measurements in both basal and 

insulin-stimulated adipocytes, indicating that trans-acceleration persisted. Indeed, when 

we sought to test for trans-acceleration in adipocytes, we observed accelerated exchange 

uptake under both basal and insulin-stimulated conditions. 

 There could be several reasons for this result. First, performing uptake at sub-5 

second time points introduces higher variability, and less reproducibility. In addition, it is 

possible that stimulation with insulin could increase the amount of GLUT4 at the cell 

surface of the adipocytes, some GLUT1 would still be present in both basal and 

stimulated adipocytes. Although the amount of GLUT1 at the surface of CHO and 3T3-

L1 cells has been shown to increase in response to insulin in some studies (264), (265), 

others show contradictory results (164), (258). In one study, the insulin-induced increase 

in plasma membrane expression of GLUT1 (~6-fold) was accompanied by a greater 

82



increase of surface GLUT4 (~17-fold; (263)); another study reported a 90% decrease in 

GLUT1 activity in differentiated adipocytes (266). For our purposes, the critical aspect 

was whether the amount of total GLUT1 at the surface would be significant enough to 

result in a positive read-out for trans-acceleration, which appears to be the case. 

 A third possible explanation would be the presence of a heterogeneous population 

of adipocytes and some undifferentiated fibroblasts. This would likely preclude accurate 

and reproducible measurements of “loss” of trans-acceleration, as a variable number of 

cells would still be utilizing GLUT1 as the primary transporter. Regardless of the 

explanation for the results observed in adipocytes, the 3T3-L1 system proved to exhibit 

transport properties too rapid to be useful as a proof-of-principle model for our study.

 Therefore, we concluded that in order to measure trans-acceleration 

experimentally, we require an experimental system where transport is slowed sufficiently 

to provide reliable, reproducible measurements. This would allow us to ensure the ability 

to measure both gain and loss of trans-acceleration ability above background. In addition, 

in order to compare the effect of sequence differences between GLUT1 and GLUT4, we 

require a cell system where neither is expressed endogenously, such that both transporters 

and mutation(s) to either could be transiently over-expressed. Future studies will focus on 

establishing these parameters and comparing domains of GLUT1 and GLUT4 as they 

pertain to ability to catalyze trans-acceleration.
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CHAPTER III

Sequence Determinants of GLUT1-Mediated Trans-Acceleration: Analysis by 

Homology-Scanning Mutagenesis

Abstract

 The class 1 equilibrative glucose transporters GLUT1 and GLUT4 are structurally 

similar but catalyze distinct modes of transport. GLUT1 exhibits trans-acceleration in 

which the presence of intracellular sugar stimulates the rate of unidirectional sugar 

uptake. GLUT4-mediated uptake is unaffected by intracellular sugar. We devised an 

approach to measure trans-acceleration in transfected HEK cells at physiologic 

temperature by analyzing hetero-exchange uptake of two sugar analogs. Using 

homology-scanning mutagenesis in which domains of GLUT1 are substituted with 

equivalent domains from GLUT4 and vice versa, we show that GLUT1 transmembrane 

domain 6 is both necessary and sufficient for trans-acceleration. In addition, substitution 

of this sequence in GLUTs 1 and 4 alters the catalytic activity of each transporter under 

zero-trans conditions.  Transmembrane domain 6 is not directly involved in GLUT1 

binding of substrate or inhibitors. Rather, this region is part of two putative scaffold 

domains, which coordinate membrane-spanning amphipathic helices that form the sugar 
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translocation pore. We propose that GLUT1 transmembrane domain 6 restrains import 

when intracellular sugar is absent.

Introduction

 The GLUT family of glucose transporters catalyzes tissue-specific facilitative 

monosaccharide transport in mammalian cells (7). GLUT1 mediates sugar uptake in red 

blood cells, smooth muscle and across blood-tissue barriers (12), (267), (268). GLUT4 is 

expressed in adipose tissue, skeletal, and cardiac muscle (269), where it is responsible for 

insulin-stimulated sugar uptake (270), (271).

 While GLUTs 1 and 4 exhibit similar affinities for substrates and antagonists 

(202), (272), their catalytic behaviors are very different. GLUT4 displays kinetic 

symmetry (Vmax and Km for net sugar uptake are indistinguishable from the corresponding 

parameters for net exit (203), while GLUT1 kinetics are asymmetric (Vmax and Km for net 

sugar uptake are significantly lower than the corresponding parameters for net exit 

(185)). In addition, GLUT1 displays a behavior termed trans-acceleration, whereas 

GLUT4 does not (177), (188), (189), (203), (206). 

 Trans-acceleration (also called accelerated-exchange transport) occurs when 

unidirectional uptake of sugar is stimulated by the presence of intracellular sugar or, 

conversely, when unidirectional exit of sugar is stimulated by the presence of 

extracellular sugar (186). Trans-acceleration may provide a metabolic advantage to the 
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cell because it results in a more rapid equilibration of the cytoplasm with extracellular 

sugar. Trans-acceleration is one of several behaviors that distinguishes carrier-mediated- 

from channel-mediated facilitative diffusion systems (273), but the physical basis of 

accelerated exchange transport is unknown. Comparative analysis of GLUTs 1 and 4 

may, therefore, permit definition of the sequence-determinants and thereby the physical 

basis of trans-acceleration.

 GLUTs 1 and 4 are structurally similar, containing cytoplasmic N- and C-termini, 

12 transmembrane spanning α-helices (TMs), and a large intracellular loop connecting 

TMs 6 and 7 (252), (10), (184). In the absence of GLUT crystal structures, our 

understanding of GLUT1 tertiary structure derives largely from scanning cysteine 

mutagenesis (129), (136), (134), (135) and modeling studies (116), (115), which align 

and thread GLUT1 sequence through the crystal structures of Major Facilitator 

Superfamily bacterial transporter homologs GlpT (274) and LacY (113). While these 

homology-based threaded structures provide quite accurate descriptions of transporter 

topography and helix-packing arrangements, they fail to accurately predict helix and 

amino acid side chain orientation within the active sites (137). 

 Some functional domains of GLUT1 have been mapped at low resolution. These 

include components of the GLUT1 nucleotide binding domain (151), (193), (152), 

substrate binding sites (275), (134), inhibitor binding sites (276), (277), allosteric 

modulation sites (213), (230), (229) and oligomerization domains ((142), Levine et al., in 

preparation). However, detailed structures of these domains and the conformational 
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changes associated with transport are not yet available. In addition, analogous modeling 

studies have yet to be extended to GLUT4. Thus, the available data do not yet provide an 

explanation for substrate binding and translocation by GLUTs 1 and 4, or why GLUT1 

catalyzes trans-acceleration but GLUT4 does not.

 This study attempts to investigate the determinants of transporter function using 

homology-scanning mutagenesis of structurally related but functionally different 

members of a transporter family. We engineered GLUT1 and GLUT4 chimeras in which 

we substituted progressively smaller domains of one transporter by the corresponding 

domains of the other transporter. These chimeras exhibit sequence-dependent trans-

acceleration gain- or loss-of-function.

 We observe trans-acceleration in GLUT1-transfected HEK cells but not in cells 

transfected with human GLUT4. Homology-scanning mutagenesis reveals that TM6 of 

GLUT1 is both necessary and sufficient to confer trans-acceleration to the GLUT4 

scaffold. Similarly, the replacement of GLUT1 TM6 with the corresponding region in 

GLUT4 ablates trans-acceleration in the GLUT1 scaffold. These results confirm that 

trans-acceleration is sequence-dependent, requiring a motif within the putative scaffold 

region of GLUT1, rather than in the translocation pore-forming region of the protein. The 

implications of our findings are discussed in the context of the prevailing models for 

GLUT-mediated sugar transport.
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Experimental Procedures

Materials 

 [3H]-2-deoxy-D-glucose was purchased from MP Biomedical. HEK-293 cells 

were purchased from ATCC. DMEM, DPBS, penicillin/streptomycin, Lipofectamine 

2000, DH5α-Subcloning cells, pcDNA 3.1 (+) mammalian expression vector, Bis-Tris 

gels and MES buffer were obtained from Invitrogen. All restriction enzymes and 

associated buffers were obtained from New England Biolabs. All primers were purchased 

from Integrated DNA Technologies. Herculase polymerase, XL1-Blue Competent cells 

and QuikChange Multi Site-Directed Mutagenesis kits were obtained from Stratagene. 

RNeasy, Qiashredder, One-Step RT-PCR, MinElute Gel Purification, PCR Purification, 

and HiSpeed Maxi kits were from Qiagen. iScript One-Step PCR kit with SYBR green 

was purchased from BioRad. PVDF membranes were obtained from ThermoFisher. 10% 

bovine serum albumin was from American Bioanalytical. Super Signal Pico West, 

NeutrAvidin Gel, micro-BCA kits, spin columns and EZ-Link Sulfo-NHS-SS-Biotin were 

from Pierce. Protease inhibitor cocktail tablets were from Roche. Other reagents were 

purchased from Sigma Chemicals.

Solutions 

 Cell lysis buffer consisted of DPBS, 0.5% Triton X-100 plus protease inhibitiors 

with EDTA. TBS contained 20 mM Tris base, 135 mM NaCl, pH 7.6. Biotin lysis and 

column wash buffer comprised TBS, 0.5% Triton X-100 and protease inhibitors with 
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EDTA. Sample buffer consisted of 0.5 M Tris-Cl, pH 6.8, 40% (v/v) glycerol, 8% SDS, 

bromophenol blue, and 150 mM DTT; biotinylation sample buffer did not contain 

bromophenol blue. DPBS-Mg contained 5 mM MgCl2. 2-DG uptake solution contained 

100 µM 2-DG with 2.5 µCi/ml [3H]-2DG in DPBS-Mg. Stop solution consisted of 10 µM 

cytochalasin B and 100 µM phloretin in DPBS-Mg. Triton extraction buffer contained 

0.5% Triton X-100 and 50 µM EDTA in DPBS-Mg. 2-DG/3-MG uptake solution 

consisted of 100 µM 2-DG with 2.5 µCi/ml [3H]-2DG in DPBS-Mg with 40 mM 3-MG.

Antibodies

 A custom-made (New England Peptide) affinity-purified rabbit polyclonal 

antibody raised against a peptide corresponding to GLUT1 C-terminal residues 480-492 

was used at 1:10,000 dilution as described previously (152). A rabbit polyclonal anti-

GLUT4 C-terminal antibody (Sigma G4048) was used at 1:3,000 dilution. A rabbit 

polyclonal anti-myc antibody (AbCam ab9106) was used at 1:5,000 dilution. Horseradish 

peroxidase-conjugated goat anti-rabbit secondary antibody (Jackson ImmunoResearch) 

was used at 1:50,000 dilution. A rabbit polyclonal anti-Na+,K+-ATPase antibody (Cell 

Signaling Technologies 3010) was used at 1:500 dilution.

Tissue Culture

 HEK-293 cell culture was as previously described previously (195). All 

experiments were performed with confluent cells. Plates were subcultured into 12 well 

plates at a ratio of 1:2-1:4 2-4 days prior to transfection. Passages 4-19 were used for all 

experiments.
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Mutagenesis

 GLUT1- or GLUT4-encoding cDNA was inserted into the EcoRV-Not1 restriction 

sites of pcDNA 3.1 (+). Myc-tagged constructs were made using overlapping primers to 

insert the myc tag in exofacial loop 1, between GLUT1 residues 55-56 or GLUT4 

residues 72-73. All TM-domain chimeras were engineered by designing overlapping 

primers for each region of interest, amplifying each fragment via PCR using Herculase 

polymerase, purifying each fragment with the MinElute Gel Purification kit, joining 

fragments by PCR, and repeating until a full-length insert was obtained. The insert was 

purified by the PCR Purification kit, digested with restriction enzymes, purified by the 

MinElute Gel Purification kit, and inserted into pcDNA 3.1 (+) with the same restriction 

sites. All final constructs were subcloned into either XL1-Blue Competent cells or DH5α-

Subcloning cells, purified using a HiSpeed Maxi kit, and verified by sequencing analysis 

(Davis Sequencing, Davis, CA). All point mutations and amino acid substitutions were 

engineered using QuikChange Multi Site-Directed Mutagenesis kits and were verified by 

sequencing. For a complete list of primers used, see Appendix (Table A1).

Quantitative and End Point Reverse-Transcriptase PCR

 Total RNA was isolated from HEK cells using the RNeasy kit and Qiashredder. 

End point RT-PCR was performed as per the One-Step RT PCR kit instructions using 

GLUT-specific primers. RT-PCR products were resolved on a 1.5% agarose gel and 

visualized by ethidium bromide staining. Expression levels of detected GLUTs were 

measured by quantitative RT-PCR using the iScript One-Step PCR kit with SYBR green. 
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Samples were run in duplicate on an MJ Research PTC-200 Peltier Thermal Cycler with 

a Chromo4 real time PCR detector running Opticon Monitor 3 software (Bio-Rad). 

Results were analyzed by using the delta-delta Ct method (259) and normalized to a 

GAPDH control. For a complete list of primers used, see Appendix (Table A2).

Transient Transfection

 Cells (70-90% confluency) were transfected with 2 µg DNA per well (12 well 

plates) or 5 µg DNA per well (6 well plates), unless otherwise specified. Transfections 

were performed 36-48 hours prior to analysis of sugar uptake or protein expression.

Western Blotting

 Cells were pelleted, washed with DPBS, lysed in cell lysis buffer, and protein 

concentration was assessed using a micro-BCA kit. Lysates were normalized for total 

protein concentration and resolved by SDS-PAGE on a 10% Bis-Tris gel in MES buffer. 

Gels were transferred onto PVDF membranes, blocked with 10% bovine serum albumin 

in TBS-T, probed with primary antibody overnight at 4°C, probed with secondary 

antibody for 1 hour at room temperature, and developed using Super Signal Pico West 

Chemiluminescent substrate. Blots were imaged on a FujiFilm LAS-3000 and relative 

band densities were quantitated using ImageJ software.

Biotinylation

 6-well plates of HEK cells were washed twice with ice-cold DPBS and incubated 

on ice with ice-cold DPBS containing 5 mM EZ-Link Sulfo-NHS-SS-Biotin for 30 min 

with gentle rocking. Reactions were quenched by adjusting each well to 12.5 mM Trizma 
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base. Cells were harvested,  re-suspended in biotin lysis buffer and lysates were bound to 

Neutravidin Gel in spin columns according to kit instructions. Protein concentration was 

determined spectrophotometrically, and normalized loads were analyzed by Western blot 

as described above.

2-deoxy-D-glucose Sugar Uptake

 2-deoxy-D-glucose (2-DG) is an analog of the natural GLUT1 substrate, D-

glucose. At physiologic temperature, cytoplasmic 2-DG is phosphorylated by hexokinase 

to form 2-deoxy-D-glucose-6-phosphate (2-DG-6-P), which is neither metabolized 

further nor is a GLUT1 substrate (195), (278). Imported [3H]-2-DG is therefore trapped 

within the cell as [3H]-2-DG-6-P. 

 2-DG uptake was measured as described previously (234). Briefly, 36-48 hours 

post-transfection, 12-well plates of confluent HEK-293 cells were serum- and glucose-

starved for 2 hours at 37°C in FBS- and penicillin/streptomycin-free DMEM lacking 

glucose. Cells were washed with 0.5 mL DPBS-Mg at 37°C, then exposed to 0.5 mL of 

[3H]-2-DG uptake solution for 0 to 30 min at 37°C. Uptake was stopped by addition of 1 

mL ice-cold stop solution. Cells were washed twice with ice-cold stop solution and 

extracted with Triton extraction buffer. Total protein concentration was analyzed in 

duplicate. Each sample was counted in duplicate by liquid scintillation spectrometry. 

Each condition was performed in triplicate on at least 3 separate assay occasions.
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Zero-Trans and Hetero-Exchange Transport Measurements

 Zero-trans sugar uptake describes uptake of sugar into cells lacking intracellular 

sugar. Hetero-exchange sugar uptake describes uptake of sugar into cells preloaded with a 

different, but transportable sugar (226). Zero-trans uptake of [3H]-2-DG by sugar-

depleted cells was measured as described above with one modification - the transported 

sugar 3-O-methyl-D-glucose (3-MG; 40 mM) was included in the uptake medium. 

Extracellular 3-MG competitively inhibits [3H]-2-DG uptake and thus permits more 

accurate measurement of transport over a 5 minute interval at physiologic temperature 

(37°C). Because 3-MG is not a hexokinase substrate (196), any 3-MG that enters the cells 

during transport or by pre-loading the cells does not compete with intracellular 2-DG for 

interaction with hexokinase. In hetero-exchange uptake, the concentration of 3-MG inside 

and outside of the cell is identical (40 mM). This is accomplished by adding 40 mM 3-

MG to glucose-free DMEM during serum starvation and to DPBS-Mg used in pre-uptake 

washes. This method was developed to measure trans-acceleration in transfected HEK 

cells; analysis of 3T3-L1 fibroblast transport under these conditions did not show trans-

acceleration (Appendix Figure A3.1)

Data Analysis

 All data analysis was performed using GraphPad Prism (La Jolla, CA, v 5.0). For 

sugar uptake experiments, background counts were subtracted from all samples and 

uptake, v, was normalized to [total protein]/well. [3H]-2-DG uptake (DPM/µg) was then 

converted to mol/µg protein/min by using the measured specific activity of the uptake 
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solution. Average uptake in mock-transfected controls was subtracted from the uptake of 

the corresponding transfected samples. For experiments where [3-MG]i was varied, sugar 

uptake, v, was fitted to the following approximation (Equation 3.1):

by non-linear regression analysis, where vb is sugar uptake in the absence of 3-MGi, Emax 

is the stimulation of sugar uptake produced by saturating 3-MGi, [S] is the concentration 

of 3-MGi and KE is that concentration of 3-MGi which stimulates sugar uptake by 50%.

In experiments evaluating whether trans-acceleration is observed, the ratio of hetero-

exchange (HE) uptake:zero-trans uptake (ZT) was computed for each construct. As we 

shall show, this normalizes for experimental variation in transporter cell surface 

expression. When this ratio is significantly greater than 1, trans-acceleration is present. 

The results of paired experiments were analyzed using Student's t-test.
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Results

GLUT1 and GLUT4 chimeras

 In order to identify GLUT1 domain(s) required for trans-acceleration, we 

swapped specific transmembrane regions of GLUT1 with equivalent GLUT4 sequence. 

This allows us to map the involvement of large regions of the transporter in trans-

acceleration and thereby narrow our focus to smaller sub-domains (Figure 3.1). Chimera 

nomenclature divides the GLUTs into 4 sets of three contiguous TMs (1-3, 4-6, 7-9, 

10-12). A chimera comprising the first half of GLUT1 plus the second half of GLUT4 is 

termed 1144 - GLUT1 TMs 1-3 and 4-6 plus GLUT4 TMs 7-9 and 10-12. If loop 6 

linking TMs 6 and 7 is the focus, this is indicated in parenthesis. Thus, 44(1)11 is GLUT4 

TMs 1-6, GLUT1 loop 6, and GLUT1 TMs 7-12. 1411 is GLUT1 TMs 1-3 plus GLUT4 

TMs 4-6 plus GLUT1 loop 6 and TMs 7-12 (Figure 3.1B).  Mutations involving only 1 or 

2 TMs list the scaffold GLUT with substitutions from the other GLUT in parenthesis, e.g. 

GLUT4 (5,6 G1) is GLUT4 containing GLUT1 TMs 5-6. 

Trans-Acceleration in HEK Cells

 HEK-293 cells were selected for heterologous expression of GLUT1, GLUT4 and 

GLUT1-GLUT4 chimeras because of their very low endogenous expression of human 

GLUTs 1 and 4, as determined by qPCR (Figure 3.2). Net uptake of 100 µM 2-DG 

increases linearly with time (0 – 10 min) in GLUT1-transfected cells (Figure 3.3A). The 
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Figure 3.1 GLUT1/GLUT4 chimeras 

A, Schematic of GLUT topology; trans-membrane domains (1-12) are numbered in 
blocks of 3. Intracellular loop 6 (L6) connects TMs 6-7 and the carboxy-terminus (Ct) is 
cytoplasmic. B, Chimera nomenclature derives from the origin of each block of 3 TMs 
and from the origin of loop 6 (in parentheses). When substitutions smaller than 3 TMs are 
made, the chimera is named by the scaffold protein (GLUT1 or GLUT4) with the 
substituted TM domain(s) in parenthesis (i.e. GLUT4 containing TMs 5-6 of GLUT1 is 
GLUT4 (5,6 G1)).
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Figure 3.2 Analysis of HEK cell endogenous GLUT mRNA expression by qPCR 

HEK cells were screened for the presence of all GLUTs by end-point RT-PCR (Appendix 
Figure A3.1). Quantitative RT-PCR was then used to compare message expression levels. 
Expression relative to GLUT12 message (ordinate) is plotted versus GLUT identity 
(abscissa). The significance of the difference between GLUT12 and other GLUTs was 
computed by an unpaired, 2-tailed Student’s t-test with the following results: 

*** P ≤ 0.005. 
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Figure 3.3 Sugar uptake in HEK cells expressing GLUT1, GLUT4, and 
  myc-tagged GLUTs 

A, Time course of 3[H]-2-DG uptake in control and GLUT1-transfected cells. Ordinate: 
2-DG uptake in dpm per µg total cell protein; abscissa: time in minutes. 2-DG uptake is 
shown in mock-transfected (●) and GLUT1-transfected (○) cells. Lines drawn through 
the points were computed by linear regression. GLUT1-mediated hetero-exchange is 
indicated by the triangle (∆) and the gray rectangle indicates the range of transport 
produced by a 2-3-fold stimulation of transport during hetero-exchange at 5 minutes. B, 
Dose-response of 100 µM 2-DG uptake (ordinate) from medium containing 40 mM 3-
MG into HEK cells pre-loaded with 0-40 mM 3-MG (abcissa) and transfected with 
GLUT1 (○) or GLUT4 (●). Basal uptake by mock-transfected cells was subtracted at 
each 3-MG concentration. Data points represent the mean ± SEM for three separate 
assays. The curve drawn through the GLUT1 data was computed by nonlinear regression 
assuming that uptake is described by equation 3.1. The resulting analysis yields 
parameters of vb = 0.087 ± 0.003 pmol/µg/min; Emax = 0.063 ± 0.002 pmol/µg/min; KE = 
25.8 ± 1.5 mM. The line drawn through the GLUT4 data was computed by linear 
regression. C, Western Blot analysis of total protein levels in GLUT1myc- and 
GLUT4myc-transfected HEK cells. Representative Western blot of whole cell lysates 
from HEK cells transfected with GLUT1myc or GLUT4myc constructs. Lysates were 
resolved by SDS-PAGE, transferred to PVDF membranes and probed with α-myc Ab 
(top), α-GLUT1 C-terminal Ab (middle), or α-GLUT4 C-terminal Ab (bottom). 
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time course of 2-DG uptake is even slower in the presence of competing 3-MG 

(Appendix Figure A3.3). The experiments reported in this study employ a 5-minute 

uptake interval, which provides an ample range of linearity to detect a 2- to 3-fold 

increase in 2-DG uptake during hetero-exchange transport catalyzed by transfected 

GLUTs. In order to characterize differences in sugar uptake in response to intracellular 

sugar, [3H]-2-DG uptake from medium containing 40 mM 3-MG was measured in 

GLUT1- or GLUT4-transfected HEK cells pre-loaded with 0 to 40 mM 3-MG (Figure 

3.3B). GLUT1-transfected HEK cells show a dose-dependent stimulation of 2-DG uptake 

with increasing intracellular [3-MG], while GLUT4-transfected HEK cells do not. This 

confirms that human GLUT1 displays trans-acceleration at 37ºC, whereas human GLUT4 

does not. GLUT1-mediated 2-DG uptake increases in a saturable manner with [3-MG]i, 

showing a maximal stimulation (Emax) of 1.72 ± 0.02-fold with 50% stimulation (KE) at 

25.6 ± 1.5 mM 3-MGi. 40 mM 3-MGi was used in all further hetero-exchange 

experiments.

Modification of GLUT4 to increase surface expression

 The pre-loading experiment (Figure 3.3B) indicates that zero-trans 2-DG uptake 

in GLUT4myc-transfected HEK cells is significantly slower than uptake in GLUT1myc-

transfected cells. Total protein expression levels appear similar by Western blot (Figure 

3.3C), suggesting either that significantly less GLUT4myc is expressed at the cell surface 

or that GLUT4myc has lower intrinsic activity (kcat) than GLUT1myc. We show below 
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that cell surface protein biotinylation analysis indicates that GLUT4myc surface 

expression is less than half that of GLUT1myc. Efforts to increase GLUT4myc surface 

expression by transfecting greater [GLUT4myc] DNA were ineffective (Appendix Figure 

A3.4)

 GLUT4myc surface expression was improved by engineering 3 GLUT4 

mutations known to affect surface expression in a variety of cell types. GLUT4 N- and C-

termini contain internalization (168), (171) and surface-targeting (167), (169) motifs. 

GLUT4myc mutations F5A and LL489-490AA were tested individually and together; 

their surface localization was verified by biotinylation (Appendix Figure A3.5) and their 

function was tested in assays of 100 µM 2-DG uptake under zero-trans conditions (Figure 

3.4A). In these experiments, 2-DG uptake by GLUT4myc is only one quarter of that 

catalyzed by GLUT1myc. 2-DG uptake by GLUT4myc F5A and by GLUT4myc 

LL489-490AA approaches 80% of GLUT1myc-mediated uptake. The triple mutant 

(GLUT4myc F5A/LL489-490AA) catalyzes a level of 2-DG uptake indistinguishable 

from that of GLUT1myc. This mutant (GLUT4myc-3x) was used as the GLUT4 scaffold 

in all further mutational analysis. GLUT1myc typically displays a 1.8 ± 0.15-fold 

stimulation of sugar uptake under hetero-exchange conditions (Table 3.1). However, both 

GLUT4myc and GLUT4myc-3x display no trans-acceleration (Figure 3.4B). This 

confirms that the loop 1 exofacial myc tag and the cell surface-expression mutations 

introduced into GLUT4 do not significantly perturb wild-type exchange-transport 

behavior. 
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Figure 3.4 Sugar transport by GLUT4myc mutants aimed at increasing surface 
  expression   
A, Zero-trans uptake measurements of 100 µM 2-DG in HEK cells (ordinate) transfected 
with GLUT1myc, GLUT4myc, and GLUT4myc mutants (abscissa) engineered to 
increase surface expression (GLUT4 F5A, GLUT4 LL489-490AA, and GLUT4-3x 
(GLUT4 F5A/LL 489-490AA)). Uptake is normalized to zero-trans uptake by 
GLUT1myc transfected cells. B, Uptake measurements (ordinate) of 100 µM 2-DG in the 
presence of 40 mM 3-MG in HEK cells transfected with GLUT1myc, GLUT4myc, or 
GLUT4myc-3x (abscissa) under zero-trans (empty bars) or hetero-exchange (gray bars) 
conditions. Results are shown as mean ± SEM for three separate assays. The significance 
of the difference between control and test conditions was computed by an unpaired, 2-
tailed Student’s t-test analysis yielding the following P values: *** P ≤ 0.001.
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Transport rates are proportional to cell surface GLUT expression

 The absolute rates of GLUT1-mediated zero-trans (ZT) and hetero-exchange (HE) 

2-DG uptake are proportional to the amount of transporter at the cell surface. However, 

transport behavior (GLUT1-mediated trans-acceleration) is unaffected by expression 

level. To illustrate this, HEK cells were transfected with a range of [GLUT1myc DNA], 

and the relationship between cell surface GLUT1myc expression and GLUT1myc-

mediated zero-trans and hetero-exchange transported was investigated (Figure 3.5). 

 Surface expression was quantitated by biotinylation of cell surface protein at 4ºC 

followed by membrane solubilization, streptavidin affinity-purification of labeled 

proteins and quantitation of their GLUT1myc content by immunoblot analysis using α-

myc antibody (Figure 3.5A-B). While the relationship between cell surface expression 

and GLUT1myc-dependent zero-trans or hetero-exchange 2-DG uptake is linear (Figure 

3.5C), the nearly 2-fold increase in hetero-exchange over zero-trans uptake rates remains 

constant at every level of cell surface GLUT1myc observed. We show below that while 

GLUT4 and its engineered variants achieve differing cell surface expression levels, their 

inability to catalyze trans-acceleration is independent of expression level (see Figure 3.4B 

and Figure 3.8).

 Trans-acceleration (or lack thereof) is therefore independent of the amount of 

transporter expressed at the cell surface and is an intrinsic property of the transport 

protein. This is not unexpected. Endothelial cell GLUT1-mediated zero-trans and 

accelerated-exchange 3-MG uptake (the latter being twice as fast as zero-trans uptake) 
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Figure 3.5 The effect of GLUT1myc cell surface expression on transport rates 
  and trans-acceleration  

A, HEK cells were transfected with varying [GLUT1myc DNA]. Two days later, cell
surface proteins were biotinylated, solubilized and affinity purified on streptavidin beads, 
and GLUT1myc was detected by immunoblot analysis using either α-myc Ab or GLUT1 
α-Ct Ab. As a loading control, the α-subunit of the Na+,K+-ATPase was detected using α-
Na+,K+-ATPase Ab. The mobility of molecular weight standards is indicated. The amount 
of GLUT1myc DNA added at transfection is shown above representative blots from an 
experiement. B, Data obtained in the above experiment and from two similar experiments 
were analyzed by densitometry, background corrected, normalized to loading controls, 
and averaged. Ordinate: relative cell surface [GLUT1]; abscissa: µg DNA added at 
transfection. Results are shown as mean ± SEM for three separate assays. The curve is a 
section of a single rectangular hyperbola characterized by K0.5 = 0.47 ± 0.13 µg DNA; 
maximum expression = 1.45 ± 0.12 with expression normalized to unity at 1 µg DNA. C, 
Rate of GLUT1myc-catalyzed zero-trans (●) and hetero-exchange (○) 2-DG uptake as a 
function of cell surface [GLUT1myc] as detected by cell surface biotinylation. Cells were 
transfected with GLUT1myc DNA as in A, and measurements of ZT and HE 2-DG 
uptake or cell surface [GLUT1myc] were made in triplicate on 3 separate occasions. 
Uptake measured in mock transfected cells was subtracted. Results are shown as mean ± 
SEM for three separate assays. The lines drawn through the points were computed by the 
method of least squares and have the following parameters: ZT, slope = 43.7 ± 2.8 fmol/
µg/min/unit biotinylation, y-intercept = 2.6 ± 5.1 fmol/µg/min, R2 = 0.98; HE, slope = 
82.8 ± 8.5 fmol/µg/min/unit biotinylation, y-intercept = 8.8 ± 15.3 fmol/µg/min, R2 = 
0.96.
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are both doubled when endothelial cell surface [GLUT1] is doubled by acute metabolic 

stress (182), (183). Rat erythrocytes express 1,000-fold less GLUT1 than do human 

erythrocytes, but both cells display accelerated-exchange sugar transport (233), (279). 

Rat adipocyte GLUT4-mediated zero-trans and equilibrium exchange 3-MG uptake are 

both increased approximately 12-fold by insulin-induced GLUT4 recruitment to the cell 

surface, but the characteristic GLUT4 kinetic behavior (lack of trans-acceleration) is 

unchanged (209). Provided that heterologous expression of the transporter is sufficient to 

measure its function over background, parental transport, the kinetic behavior of the 

GLUTs (trans-acceleration or lack of trans-acceleration) is independent of cell surface 

expression levels. The measurement of some kinetic constants, such as kcat, does require 

specific knowledge of cell surface expression (see below).

Analysis of half- and quarter-protein domain-chimeras for trans-acceleration

 Zero-trans and hetero-exchange 2-DG transport were measured in HEK cells 

transfected with either GLUT1myc or the half-protein domain chimeras containing 

GLUT1 loop 6 (11(1)44 and 44(1)11). GLUT1 TMs 7-12 are not important for trans-

acceleration (Table 3.1). 2-DG uptake by GLUT1myc and by 11(1)44 is increased under 

hetero-exchange conditions, while transport catalyzed by 44(1)11 is not (Table 3.1). To 

ascertain whether loop 6 sequence is critical, we tested an analogous set of half-domain 

chimeras containing the GLUT4 sequence of loop 6 (Table 3.1). 2-DG uptake by 11(4)44 

or by 11(1)44 is significantly increased under HE conditions but transport by 
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Table 3.1

Zero-Trans and Hetero-Exchange 2-DG Uptake by GLUT1myc-GLUT4myc Chimeras

aChimera bResiduesbResidues

cZero-Trans 
Uptake (ZT)

fmol/µg/min

dFold-Stimulation 
During Hetero-
Exchange (HE)

HE:ZT

eTrans-
Acceleration

(P value)

GLUT1myc 1-4921-492 117.2 ± 14.9 1.80 ± 0.15 Y
P ≤ 0.001

GLUT4myc 1-5091-509 42.0 ± 6.8 0.96 ± 0.08 N

GLUT4myc-3x 1-5091-509 77.4 ± 7.4 1.04 ± 0.45 N

44(1)1144(1)11 G4 1-223
G1 208-492 35.4 ± 4.6 0.94 ± 0.17 N

11(1)4411(1)44 G1 1-266
G4 283-509 66.4 ± 7.4 1.90 ± 0.21 Y

P ≤ 0.001

44(4)1144(4)11 G4 1-282
G1 267-492 40.3 ± 9.0 0.96 ± 0.18 N

11(4)4411(4)44 G1 1-207
G4 224-509 35.3 ± 7.3 2.00 ± 0.31 Y

P ≤ 0.01

14441444 G1 1-119
G4 136-509 103.0 ± 7.0 1.10 ± 0.11 N

41114111 G4 1-135
G1 120-492 47.3 ± 5.9 1.70 + 0.21 Y

P ≤ 0.01

14111411 G1 1-119; 208-492
G4 136-223 146.1 ± 10.2 1.00 ± 0.13 N

41444144 G4 1-135; 224-509
G1 120-207 61.6 ± 8.1 1.80 ± 0.09 Y

P ≤ 0.00001

GLUT4myc (4,5 G1)GLUT4myc (4,5 G1) G4 1-135; 203-509
G1 120-186 60.1 ± 4.5 0.65 ± 0.15 N

GLUT4myc (5,6 G1)GLUT4myc (5,6 G1) G4 1-166; 224-509
G1 151-207 38.1 ± 3.9 1.90 ± 0.14 Y

P ≤ 0.00001

GLUT4myc (5, G1)GLUT4myc (5, G1) G4 1-166; 203-509
G1 151-186 53.2 ± 5.7 0.57 ± 0.09 N

GLUT4myc (6, G1)GLUT4myc (6, G1) G4 1-203; 224-509
G1 187-207 25.8 ± 6.2 1.80 ± 0.23 Y

P ≤ 0.01

GLUT1myc (6, G4)GLUT1myc (6, G4) G1 1-186; 208-492
G4 203-223 168.3 ± 12.5 1.10 ± 0.11 N

GLUT1myc SIIFI 191-195 
GLTVL

GLUT1myc SIIFI 191-195 
GLTVL

G1 1-190; 196-492
G4 208-212 162.4 ± 7.9 1.30 ± 0.05 Y

P ≤ 0.001
GLUT1myc CIV 202-204 

LVL
GLUT1myc CIV 202-204 

LVL
G1 1-201; 205-492

G4 218-220 64.1 ± 7.2 2.20 ± 0.18 Y
P ≤ 0.00001

GLUT4myc GLTVL 
208-212 SIIFI

GLUT4myc GLTVL 
208-212 SIIFI

G4 1-207; 213-509
G1 191-195 55.8 ± 4.9 0.59 ± 0.09 N

GLUT4myc LVL 218-220 
CIV

GLUT4myc LVL 218-220 
CIV

G4 1-217; 221-509
G1 202-204 92.1 ± 5.1 0.97 ± 0.05 N
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aThe chimeras employed in this study were constructed using two backbones: GLUT1myc (wt 
GLUT1 residues 1-492 with a c-myc epitope (EQKLISEEDL) inserted between residues 55 and 
56) and GLUT4myc-3x (wt GLUT4 residues 1-509 in which F5, L489 and L490 is each 
mutagenized to A, and with a c-myc epitope (EQKLISEEDL) inserted between residues 72 and 
73). All residue numbering ignores the inserted c-myc sequence. Chimera nomenclature is 
described in the Results section and in Figure 1. 
bThe sequence composition of chimeras is described as fusions of GLUT1myc (G1) and 
GLUT4myc-3x (G4) sequence in which G1 and G4 sequence numbering ignores the inserted c-
myc epitope.
cZero-trans uptake (ZT) of 100 µM 2-DG (fmol/µg protein/min) from medium containing 40 mM 
3-MG was measured in transfected HEK cells depleted of intracellular sugar. Values are reported 
as mean ± SEM for a minimum of n = 3 assays and are background-corrected for 2-DG uptake 
measured in non-transfected cells (41 ± 4 fmol/µg protein/min). 

dStimulation of 2-DG uptake observed under hetero-exchange conditions (extra- and intracellular 
[3-MG] = 40 mM) was determined as the ratio of hetero-exchange (HE) 2-DG uptake to ZT 
uptake (fmol/µg/min). Values are reported as mean ± SEM for a minimum of n = 3 assays. 

ZT and HE uptakes were measured for GLUT1myc in every assay. This table reports the 
GLUT1myc data as a global mean ± SEM for a minimum of n=30 assays. The range observed in 
these assays for zero-trans uptake was 39.2 ± 5.36 to 185 ± 18.8 fmol/µg/min. The range 
observed for HE:ZT was 1.48 ± 0.11 to 2.3 ± 0.31

eTrans-acceleration is absent (N) when HE:ZT is not significantly greater than 1. Trans-
acceleration is present (Y) when HE:ZT is significantly greater than 1. Significance was 
determined using an unpaired, 2-tailed student’s t-test.
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44(4)11 or 44(1)11 is not. Cytoplasmic loop 6, therefore, does not contain isoform-

specific sequence that is essential for trans-acceleration. These results allowed us to focus 

on GLUT1 TMs 1-6 for further analysis.

 2-DG uptake by 4111 shows trans-acceleration while uptake by 1444 does not 

(Table 3.1). These data show that isoform-specific sequence in TMs 1-3 is not essential 

for trans-acceleration. In contrast, TMs 4-6 appear essential for trans-acceleration (Table 

3.1). GLUT1myc-mediated 2-DG accelerated-exchange is ablated when GLUT4 TMs 4-6 

are substituted into GLUT1 (1411). Conversely, swapping TMs 4-6 of GLUT1 into a 

GLUT4myc-3x scaffold (4144) produces a gain-of-function chimera characterized by 

robust trans-acceleration (Table 3.1). 

Analysis of TMs 4-6

 We next examined paired TM substitutions in TMs 4-6. We tested for gain-of-

function in GLUT4myc-3x containing either GLUT1 TMs 4-5 (GLUT4 (4,5 G1)) or TMs 

5-6 (GLUT4 (5,6 G1); Table 3.1). Our results show that GLUT4 (4,5 G1) does not show 

exchange stimulation. However, GLUT4 (5,6 G1) displays trans-acceleration gain-of-

function. This result indicates that TMs 5-6 are required for trans-acceleration. Because 

TM5 is also present in the TMs 4-5 chimera, these data suggest either that TM6 alone is 

required for trans-acceleration, or TM6 in combination with TM5 is required. Indeed, 

when we substitute GLUT1 TM6 into GLUT4myc-3x (GLUT4 (6, G1)), we observe a 

trans-acceleration gain-of-function (Table 3.1). Conversely, GLUT1 (6, G4) displays a 

trans-acceleration loss-of-function, indicating that GLUT4 TM6 cannot substitute for 
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GLUT1 TM6. GLUT4 (5, G1) does not show trans-acceleration, indicating that GLUT1 

TM5 alone is insufficient to produce trans-acceleration in GLUT4 (Table 3.1).  Taken 

together, these data confirm that GLUT1 TM6 is both necessary and sufficient for trans-

acceleration. The relative stimulation of HE transport over ZT observed with all the TM-

domain chimeras is summarized in Figure 3.6.

Analysis of transmembrane domain 6 amino-acid substitutions

 Sequence alignment of GLUT1 and GLUT4 TM6 reveals two regions of sequence 

disparity (Figure 3.7). Region A comprises GLUT1 SIIFI191-195, corresponding to GLUT4 

GLTVL208-212. Region B is GLUT1 CIV202-204, corresponding to GLUT4 LVL218-220. We 

chose to exchange the amino acids in Regions A or B between GLUT1 and GLUT4. We 

observe that neither Region A nor B of GLUT1 sequence confers trans-acceleration when 

individually substituted into GLUT4 (Table 3.1).  Similarly, substitution of either Region 

A or B of GLUT4 into GLUT1 does not produce a loss-of-function (Table 3.1). These 

results suggest that all or some of the 8 disparate amino acids within TM6 are required 

for trans-acceleration.

Analysis of kcat/Km for wild-type and TM6 GLUT1 and GLUT4 mutants

 Despite the use of GLUT4myc-3x to increase GLUT4 surface expression, there 

remained consistently lower levels of 2-DG transport among the GLUT4-based chimeras 
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Figure 3.6 Summary of stimulation under hetero-exchange conditions for 
transmembrane domain chimeras

The amount of stimulation observed under hetero-exchange conditions is expressed as a 
ratio of HE:ZT (ordinate), shown for all of the chimeras with TM domain substitutions in 
either GLUT1myc or GLUT4myc scaffolds (abscissa). The global average of HE:ZT for 
GLUT1myc (n=30 assays; Table 3.1) was reported for reference. Trans-acceleration is 
absent when HE:ZT is ≤ 1; a line is drawn to show where HE:ZT is 1. Trans-acceleration 
is present when HE:ZT is significantly above 1. Significance was computed using an 
unpaired, 2-tailed Student’s t-test yielding the following values: ** P ≤ 0.01; *** P ≤ 
0.001; ***** P ≤ 0.00001.
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Figure 3.7 Sequence alignment and conservation of TM6 in GLUTs 
  1 and 4
 
A, Sequence alignment of the trans-acceleration subdomains (cyan background) of 
GLUT1 transmembrane domain 6 (amino acids spanning 191-195-PALLQ-201-203) in 
18 mammals. B, WebLogo plot (http://weblogo.berkeley.edu/) for this alignment. Dolphin 
GLUT1 also displays trans-acceleration (67), but its sequence is not yet known. C, 
Sequence alignment of  the trans-acceleration subdomains (cyan background) of GLUT4 
transmembrane domain 6 (amino acids spanning 208-212-PALLQ-218-220) in 11 
mammals. D, WebLogo plot for this alignment.
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(Table 3.1). This may be related in part to protein stability, as we observe similar amounts 

of message for transfected constructs (Appendix Figure A3.6) but different protein 

expression levels (Appendix Figure A3.7, A3.8). Although we attempted to examine cell 

surface expression by immunofluorescence microscopy (Appendix Figure A3.9), this was 

not quantitative. Due to these differences in chimera expression, we measured relative 

surface GLUT expression by cell-surface biotinylation and used this value to scale zero-

trans uptake rates for constructs of interest.

 Streptavidin pull-downs of biotinylated cell surface proteins confirm the presence 

of transfected myc-tagged GLUTs (Figure 3.8A). The identity of each myc-tagged 

transporter was verified by either anti-GLUT1 or anti-GLUT4 antibodies. Quantitation of 

α-myc signal reveals that GLUT4myc surface expression is 42% ± 2% relative to 

GLUT1myc expression, while surface expression of GLUT4myc-3x is only slightly 

improved (55% ± 18%). GLUT1 (6, G4) shows comparable surface expression to 

GLUT1myc (94% ± 29%), whereas GLUT4 (6, G1) achieves only 17% ± 3% of the 

GLUT1myc level. Scaling the measured zero-trans uptake rate by relative surface 

expression allows us to compare differences in catalytic activity (Figure 3.8B). Adjusted 

rates of zero-trans uptake by GLUT1myc, GLUT4myc, and GLUT4myc-3x are similar 

(Figure 3.8B). However, the trans-acceleration loss-of-function GLUT1 chimera GLUT1 

(6, G4) has an adjusted rate that is 1.5-fold greater than GLUT1myc. In contrast, the 

gain-of-function mutant, GLUT4 (6, G1), has an adjusted zero-trans rate that is lower 

than both wt GLUT4myc and GLUT4myc-3x. However, these differences are not 
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Figure 3.8 Catalytic activity of cell surface GLUT1, GLUT4, and TM6 mutants 

A, Cell surface expression of GLUT1myc, GLUT4myc, GLUT4myc-3x, GLUT1 (6, G4), 
and GLUT4 (6, G1) quantitated by cell surface biotinylation. The streptavidin pull downs 
were probed using α-myc, α-GLUT1, α-GLUT4 and α-Na+,K+-ATPase  (α-subunit) 
antibodies. Average densities of bands detected by α-myc were corrected for density 
observed in mock-transfected cells, normalized to GLUT1myc density and used to 
calculate the data in B and C. B, Adjusted zero-trans 100 µM 2-DG uptake (mol/µg/min, 
ordinate) of GLUT1myc, GLUT1 (6, G4), GLUT4myc, GLUT4myc-3x, and GLUT4 (6, 
G1) (abscissa). Adjusted rates were obtained by scaling the average zero-trans rate of 
each construct by its surface expression relative to GLUT1myc. Results are shown as 
mean ± SEM for three separate assays. An unpaired, 2-tailed Student’s t-test analysis 
yields the following P values: * P ≤ 0.07; **** P ≤ 0.0001. C, Adjusted hetero-exchange 
100 µM 2-DG uptake (mol/µg/min, ordinate) of GLUT1myc, GLUT1 (6, G4), 
GLUT4myc-3x, and GLUT4 (6, G1) (abscissa). Adjusted rates were obtained by scaling 
the average hetero-exchange rate of each construct by its surface expression relative to 
GLUT1myc. Results are shown as mean ± SEM for three separate assays.
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observed when the hetero-exchange rate of uptake is scaled by relative surface expression 

(Figure 3.8C). When intracellular sugar is present, the adjusted rates of GLUT1myc, 

GLUT4myc and both TM6 chimeras are nearly indistinguishable.

Discussion

 Using homology-scanning mutagenesis, we demonstrate that GLUT1 TM domain 

6 is both necessary and sufficient to confer a trans-acceleration gain-of-function to the 

GLUT4 scaffold. Conversely, substituting GLUT4 TM6 into the GLUT1 scaffold ablates 

trans-acceleration. These results establish that trans-acceleration is intrinsic to GLUT1 

sequence, and is not due to modulating co-factors or other cellular contexts. Although 

GLUT1 and GLUT4 TM6 differ by a total of 8 amino acids in two sub-regions, 

homology substitution of either region alone does not materially affect the trans-

acceleration profile of each transporter. This suggests that these sub-domains work in 

concert to affect GLUT1 trans-acceleration of sugar transport.

 The canonical explanation of trans-acceleration centers on two kinetic models for 

carrier-mediated transport: the simple carrier and the fixed-site carrier. The simple carrier 

(Figure 1.3) is proposed to alternate between exofacial and endofacial orientations (212), 

(280), (211), (213). During sugar uptake, an external sugar binds to the exofacial 

orientation, which then undergoes a conformational change to the endofacial state, from 

which the sugar dissociates into cytoplasm. For an additional round of sugar uptake to 
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occur, the endofacial orientation of the carrier must now reorient to the exofacial state. 

Conformational changes (exofacial to endofacial and vice versa) are termed translocation 

when a sugar is bound, and relaxation when no sugar is bound (186). Trans-acceleration 

of sugar uptake occurs when translocation (endofacial to exofacial) is faster than 

relaxation. The absence of trans-acceleration is observed when translocation proceeds at 

the same rate as relaxation. Trans-inhibition would be observed if translocation were 

slower than relaxation.

 The fixed-site carrier model (Figure 1.4) proposes that the carrier exposes 

endofacial and exofacial sugar binding sites simultaneously (262), (185), (281), (282). 

Transport proceeds concurrently in both directions, implying that sugars initially bound at 

exo- or endofacial sites exchange into a central cavity, whence they associate with the 

trans-binding site prior to release into the cytoplasm or interstitium, respectively. Simple 

exchange describes the release of a bound exo- or endofacial sugar into the central cavity 

when the trans-site is unoccupied by sugar. Geminate exchange describes the release of a 

bound exo- or endofacial sugar into the central cavity when the opposite site is occupied 

by sugar (239). Trans-acceleration is observed when geminate exchange is faster than 

simple exchange (239).

 A hybrid model (Figure 1.5) has also been proposed, in which the transporter 

comprises 4 simple carriers arranged in a coupled, anti-parallel configuration. At any 

instant, two subunits (carriers) present exofacial orientations and two subunits present 

endofacial orientations (141). If one exofacial subunit undergoes a reorientation to the 
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endofacial state, the adjacent endofacial subunit must undergo a reorientation to the 

exofacial state. If translocation is faster than relaxation, it is easy to see how intracellular 

sugar could stimulate sugar uptake.

 The current study suggests that GLUT4 TM6 sequence allows equal rates of 

simple carrier relaxation and translocation or equal rates of fixed-site carrier exchange 

and geminate-exchange. In contrast, GLUT1 TM6 sequence inhibits simple carrier 

relaxation but not translocation, or inhibits fixed-site carrier exchange but not geminate-

exchange, thereby allowing intracellular sugar to stimulate unidirectional sugar uptake. 

Whichever kinetic model is correct, the following generalization is consistent with 

experimental evidence. In carriers containing GLUT1 TM6 sequence, an empty 

endofacial sugar-binding site is inhibitory to the rate of uptake. In carriers containing 

GLUT4 TM6 sequence, this inhibition is removed and the rate of uptake is unaffected by 

the presence of intracellular sugar.

 This hypothesis is further supported by the observed differences in kcat/Km ratios 

for GLUT1, GLUT4, and the TM6 chimeras. Vmax/Km for enzyme-catalyzed reactions is 

normally obtained by measuring the rate constant, k, for the reaction at limiting substrate 

concentrations, which is converted to kcat/Km by dividing k by [enzyme]. Vmax/Km is 

obtained from measurements of 2-DG uptake and then normalized to cell surface GLUT 

expression to give kcat/Km. While it is possible that TM6 mutants could alter the affinity 

(~1/Km) of GLUT1 and GLUT4 for substrate, this seems unlikely because TM6 is a 

putative scaffold TM quite distant to the hypothesized GLUT1 substrate-binding cavity 
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(116). Moreover, Km(app) for GLUT1- and GLUT4-mediated sugar uptake is similar for 

both 2-DG (9-10 mM; (200)) and 3-MG (~6 mM; (209)). We therefore hypothesize that 

the observed changes in kcat/Km (Figure 3.8B) largely reflect changes in kcat.

 If TM6 affects the relative rates of simple carrier relaxation and translocation, or 

of fixed-site carrier exchange and geminate-exchange, we predict that the inhibitory 

sequence of GLUT1 TM6 would reduce GLUT4-catalyzed zero-trans uptake. Indeed, we 

observe that kcat/Km for GLUT4 (6, G1) is ~70% lower than that for either wt GLUT4myc 

or the surface-expression mutant GLUT4myc-3x (Figure 3.8B). In contrast, substituting 

GLUT4 TM6 sequence into GLUT1 should increase zero-trans kcat/Km relative to that of 

wt GLUT1, and this is observed. By the same rationale, we would predict that this 

inhibitory sequence would be without effect in the presence of intracellular sugar, as 

relaxation is bypassed with translocation. When we compare the adjusted hetero-

exchange rates of the TM6 chimeras (Figure 3.8C), this is indeed the case.

 GLUT1 TM6 trans-acceleration sub-domains are highly conserved (F194 and 

C202 are 100% conserved among 18 mammalian species; S191 and I193 are 94% 

conserved; see Figure 3.7). A homology-modeled GLUT1 three-dimensional structure 

(116) juxtaposes putative scaffold TMs 6 and 3 with the translocation pore-forming TM1 

(Figure 3.9 A-B). A study by Liu et al., aimed at identifying sequences important for 

ATP-modulation of GLUT1 (235), showed that a point mutation in TM3 (G111A) 

abolishes trans-acceleration of GLUT1 expressed in X. laevis oocytes. We did not 

observe this effect in the TMs 1-3 chimeras because this glycine is conserved between 

122



GLUT1 and GLUT4, and is therefore present in both chimeras. While our data suggest 

that G111 alone is not sufficient for trans-acceleration, it does not rule out the possibility 

that G111 makes critical contacts with TM6. The sequence of the membrane-spanning 

region of TM1 is invariant between GLUTs 1 and 4, with the exception of GLUT1 T30 

(Figure 3.9C). This position is conserved in GLUTs 1 and 3 (those carriers showing trans-

acceleration), but not in GLUTs 2 and 4 (carriers lacking trans-acceleration). However, a 

potential role of T30 in trans-acceleration is eliminated by the observation that the 4111 

chimera contains the substitution T30I, yet still displays trans-acceleration. It is tempting 

to speculate that GLUT1 TM6 residues 191-195 and 202-204 interact with partners in 

TM1 and/or TM3 (Figure 3.9C) to stabilize endo- and exofacial orientations of the 

substrate-deficient-carrier, thereby restraining conformational changes between exo- and 

endofacial states (e.g. relaxation). We hypothesize that when sugar binds to exofacial or 

endofacial sites, these interactions are weakened, TM arrangements are destabilized, and 

conformational change is accelerated.

 While the ability to catalyze trans-acceleration has not been studied in all GLUTs, 

exchange transport has been measured in all four of the class I glucose transporters 

(GLUTs 1-4). Human GLUT3 catalyzes trans-acceleration in rat cerebellar granule 

neurons (283) and in transfected HEK cells, while rat liver GLUT2 does not exhibit 

trans-acceleration (208). TM6 sequence comparisons across GLUTs 1 - 4 (Figure 3.9D) 

show that the same 2 sub-domains responsible for trans-acceleration in GLUT1 represent 

the only variable TM6 sequence among all four transporters. 
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Figure 3.9 Role of TM6 in GLUT1-mediated trans-acceleration.  

Putative glucose transport proteins (GLUT1) homology-modeled structure based on the 
GlpT homology model and visualized using VMD 1.8.5 (© University of Illinois 2006). 
GLUT1 coordinates were obtained from the RCSB Protein Data Bank (entry No. 1SUK). 
A, GLUT1 viewed along the bilayer plane. The limits of the bilayer are indicated by the 
cartoon representations of phospholipids. B, Putative helix packing arrangement viewed 
from the cytoplasmic surface. TMs are numbered and colored as in A. Cytoplasmic loops 
are indicated by solid lines and exofacial loops by dashed lines. C, Putative stacking of 
TMs 6 and 1. TM6 is shown as a ribbon cartoon (cyan) and residues 191-195 and 
201-203 as surface representations (yellow), respectively. TM1 is shown as a surface 
representation (cyan), with residue T30 highlighted (yellow). D, Sequence alignment of 
TM6 from human GLUTs 1, 3, 2 and 4. GLUTs 1 and 3 catalyze trans-acceleration. 
GLUTs 2 and 4 do not. Numbering corresponds to GLUT1 sequence. The areas lacking 
homology are shaded cyan. A putative consensus sequence is indicated.

125



Further homology scanning mutagenesis studies extending TM6 substitutions into 

GLUT2 and GLUT3 may reveal whether TM6 plays a central role in trans-acceleration in 

all glucose uniporters.
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CHAPTER IV

Further Characterization of Mutations to TM6 in GLUT1 and the Role of TM6 in 

Class I GLUT-Mediated Trans-Acceleration

Abstract

 The kinetic phenomenon of trans-acceleration has been studied in all four of the 

Class I glucose transporters. Both GLUTs 1 and 3 display accelerated exchange transport, 

whereas both GLUTs 2 and 4 do not. Our previous studies have shown that the putative 

scaffolding domain TM6 is necessary and sufficient for trans-acceleration in GLUTs 1 

and 4. This domain differs in a total of 8 amino acids across 2 sub-regions of the 

sequences, which also represent the most variable regions of TM6 in both GLUTs 2 and 

3. Substitution of these 8 residues show that GLUT2 TM6 sequence causes a trans-

acceleration loss-of-function in GLUT1, and substitution of GLUT3 TM6 sequence 

results in a gain-of-function in GLUT4. These changes in ability to catalyze trans-

acceleration have been associated with changes in kcat/Km of the transporter. Here, we 

show that substitutions to GLUT1 TM6 do not change the intrinsic affinity of the 

transporter for substrate, supporting the hypothesis that changing TM6 sequence changes 

catalytic activity. The GLUT2 and GLUT3 TM6 substitutions in GLUTs 1 and 4 are 

associated with the same patterns of change in zero-trans kcat. In addition, we show that 
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mutation of the GLUT2 TM6 region to GLUT1 or GLUT3 sequence results in a trans-

acceleration gain-of-function. These studies support the hypothesis that the 

conformational changes which rate-limit transport by Class I GLUTs are controlled by 

TM6. 

Introduction

 The mammalian family of glucose transporters (GLUTs) are the primary carriers 

used by cells to transport the sugars required for metabolic processes. Although the 14 

members of this family share a similar putative topology and have overlapping 

specificities for different substrates, they differ in many aspects, including tissue-specific 

expression, kinetic characteristics, and protein sequence (102), (184). Of these, the Class 

I glucose transporters (GLUTs 1-4) have been the most extensively characterized.

 The basal glucose transporter, GLUT1, is expressed in all tissues in the body, 

particularly in red blood cells, the heart, and at blood-tissue barriers (12), (13), (284). 

GLUT1 is a high-affinity glucose transporter with a Km for glucose and 2-deoxy-D-

glucose (2-DG) of ~ 2-6 mM (237), (197), (194), (199), and a Km for 3-O-methyl-D-

glucose (3-MG) of 4-20 mM, depending on experimental conditions (197), (201), (202), 

(209), (204), (205). The kinetics of GLUT1-mediated transport have been the most 

characterized of the GLUTs, as it was the first glucose transporter to be identified and 

cloned. The high levels of GLUT1 expression in erythrocytes have made the red cell a 
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classical model system for studying carrier-mediated glucose transport. Such studies have 

shown that GLUT1-mediated transport is quite complex, displaying rapid, multi-phasic 

kinetics (210), (224), asymmetry in the Vmax and Km for sugar uptake and exit (206), 

(207), and accelerated-exchange transport (also known as trans-acceleration; (188), (207), 

(201), (232)).

 One other Class I transporter, GLUT3, has also been shown to catalyze trans-

acceleration (283). While also present in the testes and in platelets, GLUT3 is highly 

expressed within the brain, particularly in neurons (21). Like GLUT1, GLUT3 is a high-

affinity glucose transporter with an even lower Km for glucose (237), (285). GLUT3 has 

also been shown to be ~5-fold more catalytically active than GLUT1 (283). The brain is 

the organ with the greatest demand for glucose, with brain function in delicate balance 

with glucose supply and delivery. It seems appropriate that GLUTs 1 and 3, glucose 

transporters with high affinity, high turnover, and the ability to rapidly equilibrate sugar 

through trans-acceleration, are the predominant GLUTs expressed at the blood-brain 

barrier and within the brain itself.

 In contrast, the other Class I transporters, GLUTs 2 and 4, do not catalyze trans-

acceleration (208), (177), (201). GLUT2 is mainly expressed in the liver, pancreas, and 

small intestine (16). In addition to its critical role in hormonally regulated sugar 

homeostasis in these tissues, GLUT2 has emerged as a key mediator of glucose sensing 

in the counter-regulatory feedback loop (18). While GLUT2 is the only Class I 

transporter that transports fructose, it is also a low-affinity glucose transpoter (Km ~ 17 
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mM (27), (237), (285)). Studies in rat hepatocytes have shown that GLUT2 displays 

neither asymmetry nor trans-acceleration of glucose (208). Similarly, GLUT4 expression 

is limited to other hormonally-regulated tissues, mainly skeletal/cardiac muscle and 

adipocytes (23). In these cells, the majority of GLUT4 resides in intracellular pools until 

stimulation by insulin (and in muscle cells, contraction) induces a rapid translocation of 

GLUT4 to the plasma membrane (286), (175), (173). Once at the surface, GLUT4 is also 

a high-affinity transporter, with a Km on the order of or lower than that of GLUT1 (200), 

(202), (287); reported GLUT4 affinity for 3-MG ranges from ~2-6 mM (197), (201), 

(202), (209). Like GLUT3, GLUT4 has been shown to display a greater turnover than 

GLUT1 (202), (287), and does not show asymmetry (203). 

 While all four Class I GLUTs transport glucose with high affinity (with the 

exception of GLUT2) and show sensitivity to the specific inhibitor cytochalasin B (CCB) 

(28), (272), (285), their sequence homology is only 48-63% (10). As with sequence 

conservation among all 14 glucose transporters, the most variant regions are the N- and 

C-termini, intracellular loop 6, and the other loops connecting the 12 transmembrane 

(TM) domains. However, our previous studies have shown that 8 disparate amino acids 

within GLUT1 transmembrane domain 6 are necessary and sufficient for trans-

acceleration (288). Because the trans-acceleration profiles of GLUT2 and GLUT3 have 

been determined experimentally, we asked whether conserved sequence motifs in the 

TM6 region could dictate ability or inability to catalyze trans-acceleration. A precursory 

analysis of the TM6 sequences for all four Class 1 transporters (Figure 3.9D) reveals that 
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the significant sequence variations within GLUT2 and GLUT3 TM6 also occur within the 

same 2 sub-regions of 8 amino acids that govern trans-acceleration in GLUT1. 

 In this study, we sought to investigate whether substitution of GLUT1 or GLUT3 

TM6 sequence was able to confer trans-acceleration in GLUT2 and GLUT4, and vice 

versa. We also sought to determine whether increases in 2-DG uptake attributed to trans-

acceleration were due to changes in Km, kcat, or both. We report the affinity of GLUT1 for 

2-DG (Km ~1 mM ) to be unchanged when TM6 is mutated to GLUT4 sequence. 

Competition of 2-DG uptake by 3-MG is also similar between wt GLUT1 and its TM6 

mutant. When we made further substitutions to the TM6 regions of GLUTs 1 and 4 with 

the sequences of GLUTs 2 and 3, we show that GLUT2 TM6 causes a loss-of-function in 

GLUT1, and GLUT3 sequence causes a gain-of-function in GLUT4. These substitutions 

are associated with a modified zero-trans kcat. We then extended the Class I TM6 

sequence substitution analysis to show that mutation of the 8 amino acids to either 

GLUT1 or GLUT3 sequence shows a trans-acceleration gain-of-function in GLUT2.

Experimental Procedures

All materials and procedures used are the same as those reported in Chapter III 

Experimental Procedures, with the following exceptions or additions:
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Mutagenesis

 GLUT1-, GLUT2- or GLUT4-encoding cDNA was inserted into the EcoRV-Not1 

restriction sites of pcDNA 3.1 (+). GLUT3-encoding cDNA was inserted into the BamHI-

Not1 restriction sites of pcDNA 3.1 (+), unless otherwise noted in the legend of Table 4.1. 

Myc-tagged constructs were made using overlapping primers to insert the myc tag in 

exofacial loop 1, between GLUT2 residues 44-45 or GLUT3 residues 49-50. For a 

complete list of primers used, see Appendix (Table A1).

Transient Transfection

 HEK cells (70-90% confluency) were transfected with 2 µg DNA per well (12 

well plates) or 5 µg DNA per well (6 well plates), unless otherwise specified. 

Transfections were performed 36-48 hours prior to analysis of sugar uptake or protein 

expression.

2-deoxy-D-glucose Sugar Uptake

 2-DG uptake was measured as described previously (Chapter III; (234)). Zero-

trans  or hetero-exchange uptake of [3H]-2-DG by sugar-depleted cells was measured as 

described previously (Chapter III; (288)). 

Data Analysis

 For experiments where the uptake of 2-DG in the presence of increasing 

competing [3-MG], sugar uptake, Ki(app), was fitted to the following equation for 

competitive inhibition (Equation 4.1):
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Where yo is the amount of 2-DG uptake in the absence of competing 3-MG and is 

constrained to less than 15 fmol/µg/min, K is the [3-MG] at half-maximal competition of 

2-DG uptake, and span is the difference between the maximum and minimum values for 

2-DG uptake.

 In experiments evaluating whether trans-acceleration is observed, the ratio of 

hetero-exchange (HE) uptake:zero-trans uptake (ZT) was computed for each construct. 

As we have shown previously (288), this normalizes for experimental variation in 

transporter cell surface expression. When this ratio is significantly greater than 1, trans-

acceleration is present. The results of paired experiments were analyzed using Student's t-

test.

Results

Comparison of substrate affinity in GLUT1 and its TM6 mutant

 In order to compare the relative affinities of GLUT1 and GLUT1 containing the 

TM6 sequence of GLUT4 (GLUT1 (6, G4)), a zero-trans dose-response to 2-DG uptake 

was measured (Figure 4.1A). As the experiments testing for changes in trans-acceleration 

relied upon 2-DG uptake, this was the analog chosen to examine the affinity of the 
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GLUT1 TM6 mutant. Analysis of the dose-response by fitting the data to Equation 4.1 

shows that while the Vmax of wt GLUT1 is over 2.5-fold greater than the Vmax for GLUT1

(6, G4), the affinities for 2-DG are within error of one another (Km ~1 mM). It is not 

possible to compare the Km obtained for zero-trans dose responses with a Km under 

equilibrium-exchange conditions for 2-DG, due to the activity of hexokinase on the pre-

loaded 2-DG. Although the affinities for 2-DG uptake were the most critical comparison, 

uptake media in the trans-acceleration experimental format contain 40 mM cold 3-MG as 

a competitive inhibitor of 2-DG uptake. Thus we sought to examine whether the 

competition of 2-DG uptake by increasing [3-MG]o was similar for both transporters. 

Analysis of 3-MG inhibition of 2-DG uptake (Figure 4.1B) yields values for Ki(app) that 

are within the same magnitude for both transporters (wt GLUT1myc Ki(app) = 2.9 ± 9.9 

mM; GLUT1 (6, G4) Ki(app) = 6.8 ± 1.9 mM).

Alignment of Class I transporter transmembrane domain 6 sequence

 TM6 is only 21 amino acids long, according to the most recent putative topology 

of GLUT1 (130). As the sequence conservation among the GLUTs is highest in the TM-

spanning regions, alignment of the putative TM6 sequences across all Class I transporters 

is straightforward (Figure 3.9D). The first 4 residues are invariant (PLLL), with the 

exception of the first 2 residues in GLUT2 (HI), showing 87.5% consensus overall. The
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Figure 4.1  Characterization of 2-DG transport by GLUT1myc and GLUT1 
 TM6 mutant 
 
A, Dose-response of 2-DG uptake (ordinate) from medium containing 0-1 mM 2-DG 
(abscissa) into HEK cells depleted of intracellular sugar and transfected with 
wtGLUT1myc (○) or GLUT1 (6, G4) (). Curves are drawn using nonlinear regression 
assuming that uptake is described by Equation 2.1, with the following results: wt 
GLUT1myc Vmax = 80.1 ± 37.3 fmol/µg/min, Km = 1.3 ± 0.9 mM with R2 = 0.9630; 
GLUT1(6, G4) Vmax = 29.3 ± 3.2 fmol/µg/min, Km = 0.78 ± 0.2 mM with R2 = 0.9937. 
Data are plotted as mean ± SEM for three separate assays. B, Competition of 2-DG 
uptake (ordinate) from medium containing 0-40 mM cold 3-MG (abscissa) into HEK 
cells pre-loaded with 40 mM 3-MG and transfected with wt GLUT1myc (●) or GLUT1 
(6, G4) (). Curves are drawn using nonlinear regression assuming that inhibition is 
described by Equation 4.1, where yo was constrained to 15 pmoles/µg/min. The resulting 
analysis yielded the following values: wt GLUT1myc Kiapp = 2.9 ± 9.9 mM with R2 = 
0.9264; GLUT1 (6, G4) Ki = 6.8 ± 1.9 mM with R2 = 0.9988. Data are plotted as mean ± 
SEM for two separate assays. In both experiments, uptake was measured at 5 minutes at 
37°C, and basal uptake by mock-transfected cells was subtracted from each data point.
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Figure 4.2  Sequence alignment and conservation of the sub-regions of 
  transmembrane domain 6 in GLUTs 2 and 3

A, Sequence alignment of the GLUT2 regions corresponding to the trans-acceleration 
sub-regions (orange background) of GLUT1 transmembrane domain 6 (human GLUT2 
amino acids spanning 223-227-RAILQ-233-235) in 7 mammals. B, WebLogo plot 
(http://weblogo.berkeley.edu/) for this alignment. C, Sequence alignment of the GLUT3 
regions corresponding to the trans-acceleration sub-regions (orange background) of 
GLUT1 transmembrane domain 6 (human GLUT3 amino acids spanning 189-193-
PAILQ-199-201) in 8 mammals. D, WebLogo plot for this alignment.
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same 8 amino acids which determine GLUT1-GLUT4 changes in trans-acceleration 

represent the most variant sequence in all Class I GLUT TM6 sequence. These are 

distributed across two sub-regions, spanning amino acids 5-9 and 15-17 of the 21 amino 

acid TM6 sequence, which are referred to as A and B, respectively. In sub-region A, there 

are no conserved residues among the transporters which display trans-acceleration 

(GLUTs 1 and 3). There are 3 of 5 residues (60%) conserved between the transporters 

which do not show trans-acceleration (GLUTs 2 and 4). Similarly, in sub-region B, there 

is no similarity between GLUTs 1 and 3, and there is 60% conservation of these 3 

residues among GLUTs 2 and 4. The remainder of TM6 sequence is more highly 

conserved; the 5 residues between the sub-regions A and B are 85% conserved, with 1 

difference each in GLUT3 and GLUT2. The final 4 amino acids of TM6 are 94% 

conserved among the class I GLUTs. With these sequence comparisons in mind, we 

designed Class I TM6 subdomain-swapping chimeras in which only the amino acids of 

sub-regions A and B were exchanged among the transporters. 

 For GLUTs 2 and 3, sequences are known across several mammalian species 

(Figure 4.2). Within TM6, GLUT2 shows 100% conservation of the GLSGV sequence in 

sub-region A, with the exception of human Gly226, which is Ala in 5 other species. Sub-

region B, SLL, is more species-variant, with more than half of the sequences showing 

Cys rather than Ser233. The remaining Leu residues are more conserved (70-85%). In 

GLUT3, TM6 sequence is also more conserved in sub-region A, where the Gly, Thr, and 

Ile of GFTIL are 100% conserved. The Phe190 is Leu in 2 species, while the final Leu is 
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Ile or Val in half of the species examined. In sub-domain B, SAA, the alanines are nearly 

100% conserved (with one exception in chicken GLUT3, which is also the most variant 

of the GLUT2 TM6 species analyzed). However, as in GLUT2, the Ser199 is also a Cys 

in a third of the species. 

Analysis of Class I transmembrane domain 6 substitutions in GLUTs 1 and 4

 As we were able to effect trans-acceleration gain- and loss-of-function by 

substitution of the 8 amino acids comprised by sub-regions A and B in previous studies 

(288), we used the same strategy in comparing the effects of other class I transporter 

sequences (see Table 4.1 for a detailed composition of chimeras). GLUT2 does not 

catalyze trans-acceleration (208). When GLUT2 223GLSGV227/233SLL235 is substituted for 

GLUT1 191SIIFI195/202CIV204 in the mutant GLUT1 (6, G2), we observe a trans-

acceleration loss-of-function (Figure 4.3). 

 Due to previous issues with surface expression of both wtGLUT4 and a triple 

mutant, GLUT4myc-3x (288), we sought to improve surface expression by substitution 

of the C-terminal 32 amino acids of GLUT1, in the construct GLUT4myc-cG1. This also 

simplifies analysis of chimera expression by using the same epitope (GLUT1 C-term) for 

the same antibody across multiple constructs. The C-terminal substitution improved upon 

wtGLUT4myc surface expression in both average zero-trans uptake (86.2 ± 8.4 fmol/µg/

min (Table 4.1) versus 42.0 ± 6.8 fmol/µg/min (Table 3.1)) and cell-surface expression, 
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Table 4.1
Zero-Trans and Hetero-Exchange 2-DG Uptake by GLUT1myc, GLUT4myc, 

GLUT2myc, and GLUT3myc Chimeras

aChimera bResiduesbResidues
cZero-Trans 
Uptake (ZT)
fmol/µg/min

dFold-Stimulation 
During Hetero-
Exchange (HE)

HE:ZT

eTrans-
Acceleration

(P value)

GLUT1myc 1-4921-492 117.2 ± 14.9 1.80 ± 0.15 Y
P ≤ 0.001

GLUT4myc-cG1 G4 1-476
G1 460-492
G4 1-476

G1 460-492 86.2 ± 8.4 1.11 ± 0.10 N

GLUT1 (6, G2)
G1 1-190; 196-200; 

204-492
G2 223-227; 233-235

G1 1-190; 196-200; 
204-492

G2 223-227; 233-235
90.8 ± 8.6 1.30 ± 0.17 N

GLUT4 (6, G3)GLUT4 (6, G3)

G4 1-206; 212-216; 
220-476

G3 189-193; 
199-201

G1 460-492

43.4 ± 7.9 1.80 ± 0.10
Y

P ≤ 0.00001

GLUT2myc-cG1GLUT2myc-cG1 G2 1-491
G1 460-492 80.6 ± 4.4 1.19 ± 0.04 N

GLUT2 (6, G1)GLUT2 (6, G1)

G2 1-222; 228-232; 
236-491

G1 191-195; 
201-203; 460-492

29.7 ± 7.6 2.40 ± 0.13 Y
P ≤ 0.0001

GLUT2 (6, G3)GLUT2 (6, G3)

G2 1-222; 228-232; 
236-491

G3 189-193; 
199-201

G1 460-492

23.8 ± 4.4 2.43 ± 0.22
Y

P ≤ 0.001

GLUT3+cG4fGLUT3+cG4f G3 1-497
G4 497-509 91.2 ± 5.3 2.00 ± 0.10

Y
P ≤ 0.00001

1311+cG4f1311+cG4f
G1 1-126; 205-492

G3 125-202
G4 497-509

112.7± 10.1 1.79± 0.10 Y
P ≤ 0.00001

GLUT3myc-cG1GLUT3myc-cG1 G3 1-457
G1 460-492 111.2 ± 12.1 1.11 ± 0.13 N

GLUT3mycGLUT3myc G3 1-497 223.5 ± 7.3
198.7 ± 8.5*

0.81 ± 0.20
0.61 ± 0.10* N
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aThe chimeras employed in this study were constructed using four backbones: GLUT1myc (wt 
GLUT1 residues 1-492 with a c-myc epitope (EQKLISEEDL) inserted between residues 55 and 
56); GLUT4myc-cG1 (wt GLUT4 residues 1-476, in which F5 is mutagenized to A and the C-
terminal 32 amino acids of GLUT1 are substituted for the C-terminus of GLUT4; and where a c-
myc epitope (EQKLISEEDL) is inserted between residues 72 and 73); GLUT2myc-cG1 (wt 
GLUT2 residues 1-491 in which the C-terminal 32 amino acids of GLUT1 are substituted for the 
C-terminus of GLUT2; and where a c-myc epitope (EQKLISEEDL) is inserted between residues 
44 and 45); and GLUT3 (wt GLUT3 residues 1-497 with a c-myc epitope (EQKLISEEDL) 
inserted between residues 49 and 50). All residue numbering ignores the inserted c-myc sequence. 
Chimera nomenclature is described in the Results section and in Chapter III. 
bThe sequence composition of chimeras is described as fusions of GLUT1 (G1), GLUT2 (G2), 
GLUT3 (G3), and/or and GLUT4 (G4) sequence in which GLUT sequence numbering ignores 
the inserted c-myc epitope.
cZero-trans uptake (ZT) of 100 µM 2-DG (fmol/µg protein/min) from medium containing 40 mM 
3-MG was measured in transfected HEK cells depleted of intracellular sugar. Values are reported 
as mean ± SEM for a minimum of n = 3 assays unless noted, and are background-corrected for 2-
DG uptake measured in non-transfected cells (41 ± 4 fmol/µg protein/min). 

dStimulation of 2-DG uptake observed under hetero-exchange conditions (extra- and intracellular 
[3-MG] = 40 mM) was determined as the ratio of hetero-exchange (HE) 2-DG uptake to ZT 
uptake (fmol/mg/min). Values are reported as mean ± SEM for a minimum of n = 3 assays. 
ZT and HE uptakes were measured for GLUT1myc in every assay. This table reports the 
GLUT1myc data as a global mean ± SEM for a minimum of n=30 assays. The range observed in 
these assays for zero-trans uptake was 39.2 ± 5.36 to 185 ± 18.8 fmol/µg/min. The range 
observed for HE:ZT was 1.48 ± 0.11 to 2.3 ± 0.31

eTrans-acceleration is absent (N) when HE:ZT is not significantly greater than 1. Trans-
acceleration is present (Y) when HE:ZT is significantly greater than 1. Significance was 
determined using an unpaired, 2-tailed student’s t-test.

fConstructs were designed and made by Dr. K. Levine and Dr. J. DeZutter. Both inserts were put 
in the same vector (pcDNA 3.1 (+)) as the other chimeras listed, while using 5’HindIII and 
3’XHOI sites. GLUT3+cG4 and 1311+cG4 represent a fusion of the C-terminal 13 amino acids 
of GLUT4 on the intact GLUT3 sequence or the chimera 1311 rather than a C-terminal 
substitution. Sequence range of TMs 4-6 substituted in 1311 differs slightly from TMs 4-6 of 
other chimeras reported in this study due to source of GLUT1 topology (for 1311, alignment 
reported in Joost and Thorens, 2001 was used; other chimeras use alignment reported in Blodgett 
et al., 2008).

*Both ZT and HE uptake were performed at 2 min instead of 5. The GLUT1myc-mediated ZT 
uptake at 2 min was 77.1 ± 10.3 fmol/µg/min in the same experiment. Each wtGLUT3myc 
experiment was performed n=1.
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but was within a similar range of the GLUT4myc-3x mutant in both transport (86.2 ± 8.4 

fmol/µg/min (Table 4.1) versus 77.4 ± 7.4 fmol/µg/min (Table 3.1)) and surface 

expression (Figure 4.4B). The surface expression of GLUT4myc-cG1 is still less than 

that of wtGLUT1myc. Upon characterization, we observe that this C-terminal 

substitution is without effect on trans-acceleration; GLUT4myc-cG1 does not display 

accelerated exchange (Figure 4.3 and Table 4.1). This is expected, as we have previously 

shown that the C-terminal half of the protein is not involved in trans-acceleration (288). 

However, when we substitute the sequence of GLUT3 (189GFTIL193/199SAA201 for 

GLUT4 208GLTVL212/218LVL220), which displays trans-acceleration, into the GLUT4myc-

cG1 scaffold (GLUT4 (6, G3)), we observe a trans-acceleration gain-of-function (Figure 

4.3).

Analysis of kcat/Km for Class I TM6 GLUT1 and GLUT4 mutants

 In order to characterize whether the GLUT2 and GLUT3 sequence substitutions 

within TM6 cause changes to kcat, it was necessary to measure relative surface expression 

of each transporter and scale the rates of uptake, as we have done previously (288). 

Biotinylated cell-surface transporters were pulled down and affinity-purified on 

streptavidin columns. Western blotting analysis with both α-myc and α-GLUT1 C-

terminal antibodies (Figure 4.4A) shows that GLUT1myc exhibits the highest level of 

surface expression. Quantitation of the α-myc bands by densitometry (Figure 4.4B) 

reveals that the surface expression of the GLUT2 TM6 mutant of GLUT1 is 62 ± 5% 
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Figure 4.3  Comparison of transport by GLUTs 1 and 4 containing GLUTs 2-3 
TM6 sequence substitutions 

Normalized uptake of 100 µM 2-DG/40 mM 3-MG (ordinate) under zero-trans (ZT, 0 
mM 3-MGi; empty bars) or hetro-exchange (HE, 40 mM 3MGi; shaded bars) conditions 
into HEK cells transfected with GLUT1myc, GLUT4myc containing the C-terminal 32 
amino acids of GLUT1 (GLUT4-cG1), GLUT1myc containing the TM6 sequence of 
GLUT2 (GLUT1 (6, G2)), or GLUT4myc-cG1 containing the TM6 sequence of GLUT3 
(GLUT4 (6, G3)) (abscissa). The value for normalized uptake was obtained by 
normalizing HE uptake to ZT for each transfected construct. Uptake was measured at 5 
minutes at 37°C, and basal uptake by mock-transfected cells was subtracted from each 
data point. Data are plotted as mean ± SEM for four separate assays. An unpaired, 2-
tailed Student’s t-test yields the following P value: ***** P ≤ 0.00001.
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Figure 4.4  Cell-surface expression of GLUT1, GLUT4-cG1, and mutations to 
TM6 

A, HEK cells were transfected with the construct indicated. Two days later, cell surface 
proteins were biotinylated, solubilized and affinity-purified on streptavidin beads. 
Transfected constructs were detected by α-myc and α-GLUT1 C-terminal antibodies. As 
a loading control, the α-subunit of the Na+,K+-ATPase was detected with α-Na+,K+-
ATPase (α−subunit). The mobility of molecular weight standards is indicated. 
Transfected constructs that were investigated in additional experiments are shown in 
bold. B, Data obtained in the above experiment and two similar experiments were 
analyzed by densitometry, background corrected, normalized to loading controls, and 
averaged. The average density of α-myc bands normalized to GLUT1myc (ordinate) is 
plotted for the constructs of interest (abscissa). Data are plotted as mean ± SEM for three 
separate assays. The significance between the expression of each TM6 mutant relative to 
its scaffold was computed by an unpaired, 2-tailed Student’s t-test yielding the following 
P values: ** P ≤ 0.01; *** P ≤ 0.001.
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relative to GLUT1myc. While the GLUT1 C-terminal substitution in GLUT4myc was 

made to increase its expression, GLUT4myc-cG1 displayed only 52 ± 5% of GLUT1myc

expression. The GLUT3 TM6 substitution in this GLUT4 scaffold showed even lower 

expression, at 25 ± 2% of GLUT1myc expression.

 Using the relative surface expression to scale the zero-trans and hetero-exchange 

rates of transport (Table 4.1), we are able to uncover differences in the kcat of transporters 

mutated in TM6. Upon examining differences in zero-trans rates of uptake (Figure 4.5A), 

we observe that the kcat of GLUT1 (6, G2) shows a 2.3 ± 0.5-fold increase over that of wt 

GLUT1myc. In contrast, the kcat of the gain-of-function mutant, GLUT4 (6, G3), is 

reduced 5.6 ± 3.1-fold from that of GLUT4myc-cG1. However, when the rates obtained 

from hetero-exchange uptake are scaled by the same relative surface expression values, 

no significant difference in kcat is observed among the transporters (Figure 4.5B).

Analysis of GLUT1 domain 6 substitutions in GLUT2

 Although our studies have not characterized the kinetics of transport by the other 

Class I GLUTs, we sought to examine whether TM6 is operant in the trans-acceleration 

profiles of GLUT2 and GLUT3. First, we had to establish whether we could observe the 

expected wild-type behavior of each transporter in the experimental system we 

established based on GLUTs 1 and 4. Due to concerns with the ability to express 

sufficient wtGLUT2 at the surface (289), we performed the same 32-amino acid 

exchange with GLUT1 C-terminal sequence that was used with GLUT4 above. 
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Figure 4.5  Catalytic activity of cell surface GLUT1, GLUT4-cG1, and 
  GLUTs 2-3 TM6 mutants

A, Adjusted zero-trans 100 µM 2DG/40 mM 3-MG uptake (ordinate) into HEK cells 
transfected with GLUT1myc, GLUT1 (6, G2), GLUT4myc-cG1 and GLUT4 (6, G3) 
(abscissa). B, Adjusted hetero-exchange uptake of 100 µM 2DG/40 mM 3-MG uptake 
(ordinate) into HEK cells transfected with GLUT1myc, GLUT1 (6, G2), GLUT4myc-
cG1 and GLUT4 (6, G3) (abscissa). Adjusted rates were obtained by scaling the 
average zero-trans or hetero-exchange rate of each construct by its surface expression 
relative to GLUT1myc (Figure 4.4B). Data are plotted as mean ± SEM for n=3 assays. 
An unpaired, 2-tailed Student’s t-test yields the following P values: *** P ≤ 0.001; 
***** P ≤ 0.00001
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Figure 4.6  Comparison of transport by GLUT2-cG1 containing GLUT1 and 
  GLUT3 TM6 sequence substitutions

Normalized uptake of 100 µM 2-DG/40 mM 3-MG (ordinate) under zero-trans (ZT, 
0 mM 3-MGi; empty bars) or hetro-exchange (HE, 40 mM 3-MGi; shaded bars) 
conditions into HEK cells transfected with GLUT1myc, GLUT2myc containing the 
C-terminal 32 amino acids of GLUT1 (GLUT2-cG1), GLUT2-cG1 containing the 
TM6 sequence of GLUT1 (GLUT2 (6, G1)), or GLUT2-cG1 containing the TM6 
sequence of GLUT3 (GLUT2 (6, G3)) (abscissa). The value for normalized uptake 
was obtained by normalizing HE uptake to ZT for each transfected construct. Uptake 
was measured at 5 minutes at 37°C, and basal uptake by mock-transfected cells was 
subtracted from each data point. Data are plotted as mean ± SEM for n=3 assays. An 
unpaired, 2-tailed Student’s t-test yields the following P values: *** P ≤ 0.001; 
***** P ≤ 0.00001.
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When we tested GLUT2myc-cG1, as expected, we observed no trans-acceleration (Figure 

4.6 and Table 4.1). Using the same chimeric strategies employed in earlier experiments, 

we substituted the TM6 sequence of GLUT1 191SIIFI195/202CIV204 or GLUT3 

189GFTIL193/199SAA201 into GLUT2 sub-regions A and B sequence (GLUT2 

223GLSGV227/233SLL235). Upon testing these chimeras, we observe that substitutions of 

TM6 sub-regions from both GLUT1 and GLUT3 cause a trans-acceleration gain-of-

function in GLUT2myc-cG1 (Figure 4.6).

Analysis of trans-acceleration in GLUT3

 In earlier studies aimed at elucidating regions of GLUT1 involved in trans-

acceleration, we had tested two existing constructs in the laboratory containing 

substitutions of GLUT3 TMs 4-6 sequence in GLUT1 with an addition of the final C-

terminal 13 amino acids of GLUT4 (1311+cG4), and complete GLUT3 sequence with an 

addition of the final C-terminal 13 amino acids of GLUT4, used as an epitope tag 

(GLUT3+cG4). Both of these constructs displayed trans-acceleration under standard HE 

versus ZT transport analysis (Figure 4.7 and Table 4.1). Based on the above results in 

GLUT2, we sought to test whether substitutions of GLUT2 and GLUT4 sequences into 

GLUT3 TM6 would result in a loss-of-function. However, when these constructs were 

engineered, they were based upon a new GLUT3 scaffold containing both the myc tag 

and a substitution of the C-terminal GLUT1 32 amino acids, for the sake of consistency 

with previous GLUT2- and GLUT4-based scaffolds. Unexpectedly, GLUT3myc-cG1 
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Figure 4.7  Comparison of transport by GLUT3+cG4 and GLUT1+cG4 
  containing GLUT3 TMs4-6 sequence substitution

Normalized uptake of 100 µM 2-DG/40 mM 3-MG (ordinate) under zero-trans (ZT, 0 
mM 3-MGi; empty bars) or hetro-exchange (HE, 40 mM 3-MGi; shaded bars) 
conditions into HEK cells transfected with GLUT1myc, GLUT3 with the addition of 
the C-terminal 13 residues of GLUT4 (GLUT3+cG4), GLUT1myc containing the C-
terminal addition of GLUT4 and TMs 4-6 sequence of GLUT3 (1311+cG4) (abscissa). 
The value for normalized uptake was obtained by normalizing HE uptake to ZT for 
each transfected construct. Uptake was measured at 5 minutes at 37°C, and basal 
uptake by mock-transfected cells was subtracted from each data point. Data are plotted 
as mean ± SEM for n=3 assays. An unpaired, 2-tailed Student’s t-test yields the 
following P value: ***** P ≤ 0.00001.
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does not display trans-acceleration in the same conditions under which GLUT3+cG4 

showed trans-acceleration (Figure 4.8A). We reasoned that the only major difference in 

these constructs was the C-terminal sequence, and that it would be best to proceed with a 

wt GLUT3 sequence in future experiments. However, the wt GLUT3myc construct still 

does not show trans-acceleration in our experimental system (Figure 4.8B). We tested this 

construct under normal assay conditions (5 min uptake) and also at a shorter time point (2 

min). This implies that the experimental methods developed for measuring trans-

acceleration in a GLUT1-based system are inadequate to measure the more rapid kinetics 

observed with GLUT3-mediated transport.

Discussion

 Taken together, the similarities in Class I glucose transporter substrate specificity 

and differences in both affinities and sequence conservation raise several questions. First, 

although we have shown that TM6 sequence is critical for trans-acceleration in GLUTs 1 

and 4, we have hypothesized that this is due to a modification in kcat of the transporter 

during zero-trans sugar uptake. While this is supported by experimental data reporting 

values for kcat/Km , it assumes that modifications to TM6 do not affect the affinity of the 

transporter for substrate. Despite data from other studies reporting that residues within 

TM7 and nearby loops are involved in GLUT substrate specificity (199), (99), (100), 

clearly there exists a range of operational affinities for a single substrate among different
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Figure 4.8  Comparison of transport by GLUT3myc containing GLUT1 or wt 
  C-terminal sequence

A, Normalized uptake of 100 mM 2-DG/40 mM 3-MG (ordinate) under zero-trans (ZT, 0 
mM 3-MGi; empty bars) or hetro-exchange (HE, 40 mM 3-MGi; shaded bars) conditions 
into HEK cells transfected with GLUT1myc or GLUT3myc containing the C-terminal 32 
amino acids of GLUT1 (GLUT3-cG1) (abscissa). Data are plotted as mean ± SEM for 
n=3 assays. An unpaired, 2-tailed Student’s t-test yields the following P value: ** P ≤ 
0.01. B, Normalized uptake of 100 mM 2-DG/40 mM 3-MG (ordinate) under zero-trans 
(ZT, 0 mM 3-MGi; empty bars) or hetro-exchange (HE, 40 mM 3-MGi; shaded bars) 
conditions into HEK cells transfected with GLUT1myc or wt GLUT3myc (abscissa). 
Uptake was measured for the time indicated at 37°C, and basal uptake by mock-
transfected cells was subtracted from each data point. The value for normalized uptake 
was obtained by normalizing HE uptake to ZT for each transfected construct.
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transporters. In order to confirm that kcat is changed by substitutions of TM6 sequence, it 

required investigation of whether the Km remained unaffected by these changes.

 Second, if the 8 disparate amino acids between GLUTs 1 and 4 represent the only 

major variation in TM6 sequence among the Class I GLUTs, can substitution of the 

sequences from GLUTs 2 and 3 cause associated trans-acceleration loss- and gain-of-

function in GLUT1 and GLUT4, respectively? If so, is the same change in zero-trans kcat 

observed for these substitutions? In addition, can the inverse substitutions of GLUTs 1 

and 4 sequence into GLUTs 2 and 3 result in commensurate trans-acceleration gain- and 

loss-of-function? 

 In this study, we sought to further characterize mutations to TM6 within the Class 

I glucose transporters. First, we showed that the Km for substrate (2-DG) of the GLUT1 

TM6 mutant was similar to that of wt GLUT1. To complement these data, we confirmed 

that the Ki(app) for inhibition of 2-DG uptake was also similar for the competing sugar (3-

MG) used in our studies. Together, these results establish that the catalytic changes 

observed in previous studies (288) are indeed due to TM6-mediated alterations to kcat of 

the transporter, and are not due to changes in carrier affinity for substrate. 

 However, analysis of the dose-response showed a greater Vmax for wt GLUT1 than 

GLUT1 (6, G4), which is unexpected. Previous studies have indicated that the zero-trans 

Vmax of GLUT1 (6, G4) is higher than wt GLUT1 (Table 3.1), which agrees with the 

faster zero-trans turnover observed with this mutant (Figure 3.8B). While it remains 

formally possible that the surface expression of GLUT1 (6, G4) was significantly lower 
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in the 2-DG dose-response experiment, the surface expression of this construct has been 

similar to that of wt GLUT1 in previous studies (Figure 3.8A). Thus the apparent 

differences in Vmax could be further explored with additional experiments that test higher 

concentrations of substrate to ensure that the system saturates, and analysis of 3-MG 

uptake in order to obtain more accurate kinetic measurements.

 We then extended this analysis of TM6 function in GLUT1 and GLUT4 trans-

acceleration and kcat properties by analyzing the substitution of TM6 sequence from the 

other two Class I GLUTs. A substitution of 8 residues from TM6 of GLUT2, which does 

not catalyze trans-acceleration, results in a loss-of-function in GLUT1. This is 

accompanied by an increase of the zero-trans kcat in GLUT1 (6, G2). This same pattern is 

observed with the zero-trans kcat changes in the GLUT4 TM6 mutant of GLUT1 (GLUT1 

(6, G4); Figure 3.8B). However, a substitution of 8 amino acids from TM6 of GLUT3, 

which does catalyze trans-acceleration, results in a gain-of-function in GLUT4. With the 

GLUT4 (6, G3) mutant, we observe a similar decrease in kcat to what we see with the 

GLUT1 TM6 mutant of GLUT4 (GLUT4 (6, G1); Figure 3.8B). 

 In our previous study, we explained the observed differences in zero-trans kcat by 

hypothesizing that TM6 sequence is able to affect catalytic rate by slowing 

conformational changes (e.g. relaxation) in the empty carrier. This could be explained by 

TM6 interacting with residues in proximally arranged transmembrane domains, 

potentially TMs 1 and 3. The strength of interactions between TM6 and other TMs would 

be influenced by the sequence of these 8 amino acids within TM6, and inhibitory 
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sequence would slow the conformational change from e1 to e2. This would explain the 

basis for how trans-acceleration could occur. Binding of an intracellular sugar to e1 could 

cause a structural rearrangement that would weaken the interaction(s) between TM6 and 

other TM(s), allowing e1 to e2 relaxation to progress at the same rate of translocation of 

substrate-bound e2 to e1, causing stimulation of uptake by intracellular sugar. If this were 

the case, one would expect the substitutions in TM6 sequence to be without effect on kcat 

under hetero-exchange conditions, since intracellular sugar is present. This is indeed what 

we observe for all 4 mutations to TM6 in GLUT1 and GLUT4.

 In seeking to extend the analysis of TM6 in trans-acceleration profiles of the other 

Class I transporters, we were able to show that substitution of the two sub-regions from 

GLUT1 or GLUT3 TM6 sequence into GLUT2 resulted in a trans-acceleration gain-of-

function. This supports our hypothesis that TM6 plays a role in trans-acceleration outside 

of GLUTs 1 and 4. However, we did not test whether these modifications to GLUT2 TM6 

sequence resulted in the same changes in kcat pattern observed with the GLUT1 and 

GLUT4 TM6 mutants. Establishing whether the kcat of GLUT2 is affected in the same 

way would further support a role for TM6 in carrier-associated conformational changes in 

the transport cycle.

 In turn, further analysis of GLUT3 is required to determine whether TM6 plays a 

critical role in all Class I transporters. While we were not able to measure trans-

acceleration in wt GLUT3 or GLUT3 containing the C-terminus of GLUT1, we did 

observe trans-acceleration by both full-length GLUT3 with the fusion of the 13 C-
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terminal amino acids of GLUT4, and by GLUT1 containing the TMs 4-6 sequence of 

GLUT3. We hypothesize that the underlying problem may be one of catalytic rate versus 

ability to measure initial rates. Other studies have shown that GLUT3 has a higher 

turnover than any of the other Class I GLUTs, including GLUT1 (290). This is confirmed 

by our zero-trans uptake measurements; GLUT3 shows nearly a 2-fold faster rate of 

uptake than GLUT1 at 5 minutes. We reasoned that perhaps we were attempting to 

characterize kinetics at a time point beyond the window of initial rates. The trans-

acceleration profile was unchanged at the faster time point of 2 minutes. However, the 

rate of basal uptake by GLUT3myc at 2 minutes (Table 4.1) was still ~1.7-fold faster than 

the average GLUT1myc-mediated rate of uptake at 5 minutes. 

 This supports our experimental observations that GLUT3-based kinetics appear to 

be more rapid and thus would require fine-tuning of experimental conditions. At the very 

least, time courses of 2-DG/3-MG uptake at 37°C and dose-responses would have to be 

performed in order to assess the best window for characterization of GLUT3-mediated 

trans-acceleration. The report which established GLUT3-mediated trans-acceleration in 

rat neurons (283) did so at a lower temperature, because transport was too rapid to 

measure accurately at 37°C. Although we employed an excess of 3-MG in our uptakes in 

order to slow uptake at 37°C through competitive inhibition, this may be insufficient for 

measurements of GLUT3-based transport. 

 Interestingly, the C-terminal substitutions in GLUT3 appeared to have an affect 

on the basal rate of zero-trans uptake at 5 minutes. While wt GLUT3myc showed nearly a 
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2-fold increase in Vmax over GLUT1myc, we did not observe this increased rate in 

GLUT3-cG1, whose Vmax was similar to that of wt GLUT1myc (Table 4.1). Indeed, we 

observed this lower Vmax with GLUT3+cG4 as well. The C-termini of GLUTs 1-4 are 

highly variant in sequence and length (Figure 4.9); the C-terminus of GLUT3 is 6 

residues longer than GLUT1. Our observations are supported by studies examining the 

effect of C-terminal sequence on the transport function of GLUT1. Deletion of the C-

terminal 37 amino acids has shown that transport is ablated. With this deletion, the carrier 

is locked in the e1 conformation, implying a role for the C-terminus in transport-

associated conformational changes. (291). Truncations greater than the final 24 C-

terminal residues (468-492) showed similar Km but decreased Vmax in GLUT1, as did 

point mutations at G466E and F467L. However, the point mutant R468L showed a lower 

Km (107).

 Additional studies have tested substitutions of other Class I GLUT C-terminal 

sequences. Analysis of GLUT1 containing the GLUT2 C-terminus showed a ~3.8-fold 

increase in Km and a ~4.3-fold increase in Vmax (289), which are more characteristic of 

GLUT2 than GLUT1 (292). Similarly, a chimera containing the C-terminus of GLUT4 in 

GLUT1 displayed both lower Vmax and Km under equilibrium exchange conditions, which 

are more characteristic of GLUT4-mediated transport (293). The inverse substitution 

(GLUT1 C-terminus in GLUT4) had the inverse effect; a 3- to 5-fold increase in Km was 

observed (294). Both of these GLUT1/GLUT4 C-terminal chimeras showed increased 

turnover rates relative to the wild-type scaffold transporter (293). These results certainly
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GLUT1 K G R T F D E I A S G F R Q G G A S Q S D K T P E E L F H P L G A D S Q V

GLUT2 K G K S F E E I A A E F Q K K S G S A H R P K A A V E M K F L G A T E T V

GLUT3 R G R T F E D I T R A F E G Q A H G A D R S G K D G V M E M N S I E P A K E T T T N V

GLUT4 R G R T F D Q I S A A F H R T P S L L E Q E V K P S T E L E Y L G P D E N D

45
6

46
7

Figure 4.9  Alignment of C-terminal sequences of Class I GLUTs

The C-terminal sequence of GLUTs 1-4 is aligned, with the numbering corresponding to 
GLUT1 residues shown on top. The C-terminal sequence of GLUT3 is longer than the 
other Class I GLUTs. Residues which contain basic (blue) or acidic (red) side chains are 
colored accordingly. Phenylalanies (yellow) and prolines (green) are also indicated.
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establish a role for the C-terminal sequence of GLUTs to affect both the turnover and 

affinity for substrate, which would in turn affect the ability to measure other kinetic 

parameters. 

 Previously, Dauterieve et al. showed that substituting the C-terminus of GLUT4 

into the murine isoform of GLUT1 resulted in a loss of accelerated-exchange when the 

chimera was expressed in Xenopus oocytes (293). However, they did not observe a gain-

of-function with the inverse substitution in mouse GLUT4. In direct contradiction of 

these results, we have shown that the C-terminus is not involved in trans-acceleration in 

human GLUTs 1, 2, and 4 ((288) and Figure 4.6). Although we were able to detect trans-

acceleration in GLUT3+cG4, but not with GLUT3-cG1, we hypothesize that this 

difference is due to the experimental parameters not having been optimized for GLUT3.  

Regardless, until procedures are adjusted which allow detection of trans-acceleration in 

wt GLUT3, evaluating the GLUT3-based constructs containing TM6 substitutions of 

GLUTs 2 and 4 sequence is of limited value.

 Despite the Class I mutagenesis resulting in trans-acceleration loss- and gain-of-

function chimeras, no obvious ‘trans-acceleration motif’ is evident upon sequence 

comparison. While analysis of the Class I sequence conservation among mammals could 

provide some insight as to which residues of the disparate TM6 sequence could be the 

most critical in mediating trans-acceleration behavior, it is difficult to draw any 

conclusions without testing the trans-acceleration profile of each species variant. For 

example, the differences in ability to catalyze accelerated-exchange have been reported 
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for the rat isoform of GLUT2 and the rat and mouse isoforms of GLUT3 (208), (283), 

(182). Thus while we can deduce from our results that human GLUT2 also does not 

display trans-acceleration and sequence variation between rat and human GLUT2 is 

without effect, we cannot yet make the same claim for human GLUT3. Once more data in 

different species or heterologous expression systems is obtained, then perhaps such 

sequence comparisons can become more predictive rather than correlative. Although our 

understanding and characterization of trans-acceleration in the Class I glucose 

transporters remains incomplete, the results presented in this study expand the importance 

of TM6 in accelerated-exchange transport. The relation of specific GLUT sequence to 

distinct function is a key to identifying critical motifs in modes of substrate transport 

kinetics and conformational changes during the carrier cycle.
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CHAPTER V

Conclusions and Future Directions

 Despite over 50 years of kinetic characterization of the human basal glucose 

transporter GLUT1, the phenomenon of accelerated-exchange transport has remained 

unexplained. Possible explanations have included that the observation of trans-

acceleration is an artifact of transport measurement methods, or that this behavior is 

contingent upon cell type and/or modulating cofactors. This thesis offers evidence that 

the ability to catalyze trans-acceleration is a sequence-based, intrinsic quality of glucose 

transporters. 

 In addition, the identification of GLUT1 TM6 as both necessary and sufficient for 

trans-acceleration provides insight into the mechanism of this kinetic phenomenon. We 

hypothesize that the sequence of TM6 affects trans-acceleration through interaction with 

other TM(s) within GLUT1 to alter the rate of relaxation of the carrier in the absence of 

intracellular sugar. When these potential interactions are strong, conformational 

relaxation of the empty carrier (e1 to e2) would be restrained, influencing the rate of zero-

trans sugar entry. However, when intracellular sugar is bound, the conformation of e.S1 

might weaken these TM6-mediated interactions through rearrangement of the substrate-

bound TMs. This would allow translocation to proceed at a faster rate than relaxation. 

Conversely, in transporters containing a TM6 sequence that does not display strong 
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interactions with other TMs, relaxation may proceed at an unimpeded rate equal to that of 

translocation. Thus intracellular sugar would have no effect on these interactions, and 

trans-acceleration would not be observed.

 The TM6 region of the transporter is distinct from those domains implicated thus 

far in interactions with inhibitors, substrates, modulating factors, or other GLUT 

subunits.  As a putative scaffolding domain coordinating the arrangement of the TMs 

forming the sugar translocation pore, TM6 is likely critical for conformational changes 

during the transport cycle. Studies examining the accessibility of TMs by proteolysis 

((130), K. Lloyd and A. Carruthers, unpublished) and covalent modification (78) have 

shown that TM6 is one of the least exposed transmembrane segments of GLUT1, both in 

the presence and absence of substrate. This supports its hypothetical scaffolding role, as 

nearly all of TM6 appears to be buried in the membrane in more than one conformational 

state. This is in direct contrast to the other TMs which are thought to form the sugar 

translocation pore; TMs 1, 2, 4, 5, 7, and 8 are accessible to proteolytic cleavage by 

varying degrees. Transmembrane domains 1 and 8 readily dissociate from the membrane 

upon cleavage, while putative scaffolding domains 6, 3, 9, and 12 display no accessibility 

(with the exception of 1 site in TM3; (130)).

 An extensive cysteine-scanning mutagenesis study of the residues within TM6 

identifies several residues that appear to be crucial for proper transporter function (78). 

This is in contrast to the same analysis of putative scaffolding helix 12, where scanning 

Cys-mutagenesis produced no transport-deficient mutations (133). The cysteine 
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substitutions in TM6 that significantly perturbed or ablated transport function were those 

at positions Ile192, Pro196, Gln200, Gly201, Leu204, and Pro205. Interestingly, with the 

exception of Ile192, these residues are distinct from those we identified to be critical for 

trans-acceleration. Although the I192C mutation resulted in ~80% reduction of transport 

capability over the C-less GLUT1 scaffold transporter, mutation to another residue in the 

trans-acceleration region (S191C) caused a doubling of 2-DG uptake.  It is interesting 

that single Cys mutations at each of these two sites appear to have a profound but 

opposite impact on transporter function, while our substitution of this entire sub-region 

(sub-region A: GLUT1 SIIFI 191-195) was insufficient to cause gain- or loss- of 

accelerated exchange (288). This is likely due to our use of conservative substitutions of 

actual TM6 sequence from other Class I transporters, as opposed to the strategy 

employed in the non-conservative Cys substitutions in a Cys-less transporter scaffold. 

This implies that the transport-deficient Cys-mutants tested by Makepeace and Mueckler 

have defective scaffolding interactions distinct from those we hypothesize to be important 

in trans-acceleration. All of the conservative substitutions we made in TM6 of the Class I 

GLUTs continued to transport sugar. This argues for interactions between residues of 

TM6 and those of other TMs to have different roles in stabilization, coordination, and 

conformational change of the carrier during the transport cycle.

 In order to better understand the role of TM6 in such structural changes, it will be 

necessary to identify which TM(s) interact with different region(s) of TM6. 

Unfortunately, the current threaded model of GLUT1 on GlpT (116) did not report 
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pairings of TM6 residues with those of other proximally placed TMs, explicitly because 

no functional significance had been ascribed to the scaffolding TMs at the time the model 

was published. However, GLUT1 accelerated-exchange loss-of-function has been 

observed in GLUT1 mutants examined in other studies where TM6 has not been changed. 

When Liu et al. examined mutations to the nucleotide-binding motif in TM3, although 

this did not affect ATP interaction with GLUT1, the point mutant Gly111Ala failed to 

show trans-acceleration (235). While we have systematically ruled out a direct role for 

TM3 in trans-acceleration in GLUT1, this study implies the existence of critical 

contact(s) between TM6 and TM3. According to the current threaded model, TM3, along 

with TM1, are the domains located nearest to TM6 (116). We hypothesize that we did not 

observe changes in trans-acceleration capability with TM1 substitutions because of our 

strategy of exchanging GLUT1 and GLUT4 sequence. The conservation of TM1 

sequence between GLUT1 and GLUT4 is high (81% across 31 amino acids). Thus, if 

critical contacts for TM6 exist within this domain, they were likely maintained in our 

chimeras and we were able to observe gain- and loss-of-function with only changes to 

TM6 sequence. 

 Although the sequence conservation between GLUT1 and GLUT4 is lower in 

TM3 (40% across 20 amino acids), it is possible that if critical contacts exist, they were 

either maintained in our chimeras by conserved residues, or that similar motifs (i.e. 

hydrophobic residues) are permitted in contact positions. According to the low-resolution 

TM arrangement model proposed by the extensive Cys-scanning mutagenesis of 
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Makepeace and Mueckler, TM5 may be positioned to make critical contacts with TM6 as 

well (134). Transmembrane domain 5 is also highly conserved between GLUT1 and 

GLUT4 (74% across 31 amino acids), so it is not surprising that our substitutions of TM5 

sequence, alone or in combination with TM6 sequence, did not result in a change of 

accelerated exchange behavior in the scaffold protein.

 One of the next steps toward expanding the role of TM6 in GLUT-mediated trans-

acceleration would be to further characterize TM6 substitutions in GLUTs 2 and 3. While 

we have shown that GLUT1 or GLUT3 TM6 sequence causes a gain-of-function in a 

GLUT2 scaffold, we have not examined whether this elicits the same decrease in zero-

trans kcat we observed with the same sequence substitutions in GLUT4. While this could 

be examined experimentally in a similar manner, one caveat is the presence of the 

GLUT1 C-terminus in the GLUT2 chimera. While we have shown that the C-terminus 

has no direct role in trans-acceleration, several studies (293), (294), (289), (107), (291) 

conclude that changing C-terminal sequence can affect the affinity and turnover of the 

transporter. Unfortunately, modification to the C-terminus is one of the methods we 

began to utilize to increase surface expression of the chimeras. 

 One of the greatest challenges presented by these GLUT chimeras has been 

variation in surface expression and thus low levels of zero-trans sugar uptake, which 

complicates analysis of additional kinetic parameters. While some of the C-terminal 

substitutions aided expression, as in the case of GLUT2-cG1 and GLUT4-cG1 chimeras, 

we also observe that C-terminal GLUT1 substitutions have an effect on GLUT3- and 
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GLUT4-based turnover (Table 4.1). We have hypothesized that our inability to detect 

trans-acceleration in either wt GLUT3 or GLUT3-cG1 is due to a high turnover rate. This 

increase in turnover is inferred from the greater zero-trans Vmax of uptake for both 

constructs, which we found was decreased in full-length GLUT3 fused with the C-

terminus of GLUT4 (Table 4.1). In this construct, we are able to detect trans-acceleration.

 When analyzing GLUT4-cG1, it is evident that the zero-trans kcat (Figure 4.5) is 

~3-fold greater than that of GLUT1. This is in contrast to the GLUT4 and GLUT4-3X 

constructs, which displayed a kcat similar to GLUT1 (Figure 3.8). However, another study 

comparing C-terminal substitutions characterized GLUT1 as having a ~2-fold higher 

turnover than GLUT4, while a GLUT4-cG1 mutant was ~50% faster than GLUT1 (293). 

The disagreement in relative turnover between the studies may be due to differences in 

heterologous expression system (HEK cells versus Xenopus oocytes), substrate (2-DG 

versus 3-MG), or method for measuring surface expression (cell-surface biotinylation 

versus radiolabel incorporation and immunoprecipitation of membrane proteins). Such C-

terminal substitutions add a layer of complexity in comparing turnover in the mutant 

transporters. Despite this, our analysis of changes in relative zero-trans kcat shows the 

same pattern for TM6 substitutions, regardless of whether the chimera contains an altered 

C-terminus. However, future studies may aim to address improvement in chimera surface 

expression through some other means that is without effect on transporter turnover or 

affinity.
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 Because the accurate measurement of transporter at the plasma membrane is 

critical for determination of turnover, our studies would be strengthened by using an 

orthogonal approach for cell-surface quantitation. Several possibilities exist; while 

immunofluorescence (IF) microscopy proved to be merely qualitative (Appendix Figure 

A3.6), confocal microscopy may be able to provide better quantitative imaging. However, 

the same technical issues complicating traditional IF microscopy would likely extend to 

analysis by confocal microscopy. 

 The antibodies currently available for GLUT1 and GLUT4 utilize intracellular 

epitopes, requiring exofacial tags for antibody staining, which may increase the 

possibility of non-specific staining. Although the exclusive detection of surface-tagged 

proteins should be possible by avoiding detergent in treatment of the cells, fixation of 

cells by agents such as formaldehyde or methanol may result in some permeability. This 

increases the risk of signal from non-surface transporter present in vesicles or other 

intracellular compartments. In addition, these techniques are complicated by the 

relatively small size and high density of HEK cells, which grow in multiple adherent 

layers as they reach confluency. While seeding a lower population of cells yields better 

antibody staining and imaging, transfection efficiency declines precipitously when cells 

are below ~90% confluency. Thus the number of cells expressing transfected chimeras is 

very low (~10%) in cells at densities optimized for imaging, and does not accurately 

reflect the transfection efficiency or surface expression extant when transport 

determinations are made.
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 Another approach for transporter surface quantitation would be analysis by flow 

cytometry. While this technique has the same requirement for exofacially tagged proteins, 

the challenges of cell permeation and population density are overcome. Antibody staining 

can be performed on live cells without fixative, and confluent transfected cells may be 

dissociated from adherent layers by addition of non-proteolytic agents for single-cell 

analysis of a suspension. However, the effect of such treatment on long-term cell viability  

and transporter surface expression is not known. Another advantage of this technique is 

that calibration beads have been made with a determined number of IgG binding sites1, 

which permit a direct correlation of fluorescence intensity and amount of bound 

secondary antibody. Thus a standard curve of bound antibody can be established and used 

to calculate number of cell-surface transporters. This may enable more quantitative rather 

than relative assessment of GLUT chimeras at the surface, which would either support or 

further refine our conclusions regarding TM6 sequence and changes in zero-trans 

turnover of the transporter.

 Extension of this work to further investigate TM6 sequence in carrier turnover 

and interactions with other TMs would provide more information to evaluate the current 

models for transport, all of which are consistent with trans-acceleration. However, once 

we determined that substitutions in TM6 did not affect affinity for sugar uptake (Chapter 

IV), we were able to constrain parameters in a mathematical simulation of the transport 

cycle based on the simple carrier. In the case of trans-acceleration, this would extend to 
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the modified-fixed site carrier as well, as both models offer the same basis for an 

explanation of accelerated-exchange. We did not simulate fixed-site carrier-based 

geminate exchange because this would require, at minimum, additional measurements of 

substrate exit to approximate the affinity of the second binding site. These we could not 

perform with 2-DG, and we have not analyzed TM6 mutant transport of 3-MG alone. 

However, we are able to gain insights into the transport cycle based on evaluating 

predictions of the simple carrier.

Model Predictions and Implications

 In using this mathematical model based on the simple carrier (Figure 5.1 and 

Table 5.1) to examine the transport cycle, arbitrary values were used as inputs, as some of 

these parameters cannot be measured or were not undertaken in the present study. This 

allows examination of the relationships between variables affecting different steps in the 

cycle. However, this model is constrained to reflect our experimentally observed affinity 

for zero-trans uptake of 2-DG (Kzt21 ≈ 0.5-1 mM) and the consistently observed 

magnitude for trans-acceleration under exchange conditions (~1.8- to 2.5-fold).

In order to examine a scenario describing a transporter with characteristics like GLUT4, 

parameters must be adjusted to reflect the absence of trans-acceleration and the presence 

of symmetric transport (Table 5.2). This is accomplished by setting relaxation rates equal 

to translocation rates (Roo = R12 = R21 = Ree), and by requiring that uptake and efflux 

capacities are equal (R21 = R12). When we set these parameters, we observe that the  
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Figure 5.1 King-Altman diagram of the simple carrier transport cycle 

The empty carrier in the exofacial conformation (e2) becomes complexed with substrate S 
(e.S2) in a way described by a dissociation constant (K2) determined as the ratio of the 
rate of dissociation of a substrate from the eS2 complex (b-2) divided by the second order 
rate constant for S2 and e2 association (b2). Once interstitial substrate is bound, 
translocation of substrate occurs and is described by the conformational change of e.S2 to 
e.S1. This is a reversible conformational change – the forward or reverse reactions are 
described by the first order rate constants (k1 or k-1, respectively). Substrate dissociation 
from e.S1 into the cytoplasm yields the empty endofacial carrier (e1), and is described by 
the dissociation constant K1, which is the ratio of the rate of dissociation of substrate 
from the e.S1 complex (b-1) divided by the second order rate constant for substrate-e1 
association (b1). In order for the carrier to import another extracellular substrate, e1 must 
relax back to the e2 state in a reaction described by the first-order rate constant, k0.  
Relaxation is also reversible; e2 can relax to the e1 state via the rate constant, k-0.
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Table 5.1 Definition of Model Constants and Formulas

Parameter Definition Formula
R21 Translocation during uptake (e.S2 to e.S1)

€ 

k0 + k−1

(k0 • k−1)
!

R12 Translocation during efflux (e.S1 to e.S2)

€ 

k−0 + k1

(k−0 • k1)
!

Ree Relaxation (e2 to e1)

€ 

k1 + k−1

(k1 • k−1)
!

Roo Relaxation (e1 to e2)

€ 

k0 + k−0

(k0 • k−0)
!

K Michaelis constant

€ 

K1 •
k0

k1
!

Kzt21 Zero-trans uptake constant

€ 

K •
Roo

R21

Kzt12 Zero-trans efflux constant

€ 

K •
Roo

R12

Kee Carrier isomerization constant

€ 

K •
Roo

Ree

If transport is symmetrical (GLUT4), R21=R12. If transport is asymmetrical (GLUT1), R12<R21.
If trans-acceleration occurs, Roo>R21 and R21>R12>Ree.
In the absence of trans-acceleration, k0, k-0 > k0, k-0 when trans-acceleration is not observed.
Velocity constants are computed as 

€ 

1
R
!
 ; e.g . 

€ 

V ZT
21=

1
R21

!

For a passive transporter, the relationship 

 

€ 

Vzt
21

Kzt
21 =

Vzt
12

Kzt
12 =

Vee

Kee

 must be satisfied because 

€ 

R12 + R21 = Roo + Ree !
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The relative magnitude of the relaxation rates (k0 and k-0) are constrained through the following 
relationships:

Table 5.2 Parameters Illustrating a System without Trans-Acceleration or 
Asymmetry 

Parameter Value Parameter Value
k0 20 min-1 Kzt21 0.67 mM
k-0 20 min-1 Kzt12 0.67 mM
k1 20 min-1 Kee 0.67 mM
k-1 20 min-1 Vzt21 10 mM L-1min-1

b1 30 mM-1min-1 Vzt12 10 mM L-1min-1

b-1 20 min-1 Vee 10 mM L-1min-1

b2 30 mM-1min-1 R21 0.1 min mM-1L-1

b-2 20 min-1 R12 0.1 min mM-1L-1

K1 0.67 mM Ree 0.1 min mM-1L-1

K2 0.67 mM Roo 0.1 min mM-1L-1

Y 20 K 0.67 mM
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Where Y is a constant of equality relating translocation, relaxation and binding rates defined as:

(Equation 5.1)

Rearrangement of the terms solves for the rate of relaxation (k-0) as dependent on Y and the ratio 

of substrate binding rates inside and outside the cell:

(Equation 5.2)
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intracellular and extracellular dissociation constants (K2 and K1) must be equal in order 

for the rate constant for relaxation (k-0) to be equal to the rates of the other transitions (k0, 

k1, k-1). Even though the rates of substrate binding (b1 and b2) may be slower than the 

rates of dissociation (b-1 and b-2), their ratios must remain the same in order to model a 

system without trans-acceleration or asymmetry. 

 In contrast, GLUT1 displays both trans-acceleration and asymmetry. In this 

scenario (Table 5.3), trans-acceleration is reflected as a slower rate of relaxation (1/Roo) 

than either uptake or exit (1/R21, 1/R12). In this case, we have modeled a 2.5-fold 

stimulation of uptake under exchange conditions versus zero-trans conditions (Vee = 2.5 

Vzt21), which is within the range of trans-acceleration we have observed experimentally. 

To accomplish trans-acceleration and asymmetry (Vzt21 < Vzt12 < Vee), it is required that 

Ree < R12 < R21 < Roo and k-0 < k0, and K1 must be greater than the extracellular binding 

constant, K2. If the dissociation of bound substrate from e.S2 and e.S1 occurs at the same 

rate, this requires that the rate of substrate binding to e1 is slower than binding to e2 (b1 < 

b2). If the rate of substrate binding is equal at both surfaces, then the rate of dissociation 

must be faster on the inside (b-1 > b-2). Adjusting the intracellular substrate dissociation 

constant K1 to be two times greater than K2 is the only way that forces the rate of 

relaxation to be slower, as defined in Equation 5.2.

 The main conclusion of this model is the unexpected finding that the rates of 

binding and relaxation appear to be inter-dependent. When relaxation and translocation 

rates are equal, the asymmetry of binding is lost. This is particularly interesting in the 
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Table 5.3 Parameters Illustrating a System with Trans-Acceleration and 
  Asymmetry 

Parameter Value Parameter Value
k0 5 min-1 Kzt21 0.67 mM
k-0 10 min-1 Kzt12 1 mM
k1 20 min-1 Kee 1.5 mM
k-1 20 min-1 Vzt21 4 mM L-1min-1

b1 30 mM-1min-1 Vzt12 6.67 mM L-1min-1

b-1 60 min-1 Vee 10 mM L-1min-1

b2 20 mM-1min-1 R21 0.25 min mM-1L-1

b-2 20 min-1 R12 0.15 min mM-1L-1

K1 2 mM Ree 0.1 min mM-1L-1

K2 1 mM Roo 0.3 min mM-1L-1

Y 15 K 0.5 mM
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context of the role we have defined for TM6 in trans-acceleration. While we have 

presented our hypothesis that TM6 affects the relaxation rate of the empty carrier through 

interactions with other proximal transmembrane domains, TM6 must also affect substrate 

binding, presumably by altering the rate at which e1 and e2 become available for

substrate. Although TM6 is a putative scaffolding domain and unlikely to bind substrate 

directly, the interactions of TM6 with other TMs may impact the exposed regions of the

TMs forming the sugar translocation pore. This would in turn influence rates of substrate 

binding or dissociation, and could explain why changes to TM6 sequence that equalize 

isomerization rates of the inward- and outward-facing unliganded carrier also allow equal 

substrate binding rates on both sides of the membrane. In contrast, if transporters 

displaying trans-acceleration are more structurally constrained by the sequence of TM6, 

this would slow both relaxation of the empty carrier and affect the availability of 

substrate binding sites. According to our model, both of these conditions must occur in 

accelerated-exchange transport.

 In order to test this hypothesis definitively, it will be necessary to obtain 

additional experimental transport measurements, particularly those for exit (R12) and a 

comparison of the affinity constants under zero-trans (Kzt12 and Kzt21) and exchange 

conditions (Kee). This requires use of a sugar analog other than 2-DG, which is 

metabolically trapped inside the cell and thus precludes measurement of exit or exchange 

parameters. Ideally, 3-MG would be used to further test the predictions of this model in a 

system expressing GLUT1, GLUT4, and the TM6 substitution chimeras of each. These 
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experiments may prove more technically challenging, as transport of 3-MG is extremely 

rapid. Reliable measurements of initial transport rates must be performed at ice 

temperature, and may require cells with a larger equilibration volume than HEKs. In 

addition, variable surface expression of these chimeras would also complicate detailed 

kinetic analysis. This argues for the development of stably transfected cell lines for each 

construct, which would then require careful establishment of parameters for comparing 3-

MG transport kinetics, such as time courses and dose-responses.

 Many studies have focused on mutations of GLUT transmembrane domains in the 

sugar translocation pathway to examine their potential roles in substrate interaction, 

affinity and specificity. In contrast, the work present in this thesis examines a novel role 

for a scaffolding domain in affecting intrinsic rates of the transport cycle. Although the 8 

TMs of the sugar translocation pore are coordinated by 4 scaffolding TMs, none of these 

scaffolding TMs has been previously assigned a role in transporter function. The 

importance of scaffolding domain sequence in modulating GLUT characteristics is 

supported by work from this laboratory showing that the scaffolding TM9 is critical for 

oligomerization of the transporter (Levine et al., in preparation). These studies clearly 

show that the range of operational activity among the GLUTs is determined by distinct 

regions of the protein, implying that different kinetic qualities of a transporter can be 

tuned separately from others. 

 Although the elucidation of such structure-function relationships is interesting to 

the characterization of glucose transporters, there are broader implications for the study 
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of other transport proteins as well. For example, the monocarboxylate transporters 

(MCTs) are critical for the symport of lactate and H+ in a multitude of tissues (4). While 

not all of the MCTs have been well-characterized, both MCT1 and MCT4 have shown 

trans-acceleration on the same orders of magnitude presented in this work (1.5- to 2.5-

fold stimulation; (43), (295)). The accelerated-exchange observed by MCTs 1 and 4 can 

be stimulated by either substrate, lactate or H+. This is thought to occur through allosteric 

modulation of the affinity in the second catalytic site upon binding of the first substrate. 

While we do not argue a substrate-based allosteric modulation of binding site affinity in 

our above model, it is interesting that the current model for MCT accelerated-exchange 

also explains this phenomenon by both an impeded relaxation of the empty carrier and a 

change in substrate binding (4). 

 Although MCTs are also members of the Major Facilitator Superfamily of 

transporters, their sequence homology to other members is also quite divergent (i.e. 

MCT shows 10-15% sequence identity with GlpT and LacY). However, the same 

argument for assumption of similar transmembrane domain arrangement and topology in 

the MFS-based GLUT modeling studies can be extended to MCTs as well. In fact, like 

GLUTs 1 and 3, a putative structure for MCT1 has also been proposed by homology 

modeling on the GlpT crystal structure (296). Transmembrane domain 6, along with 

TM3, is also a putative scaffolding domain in MCT1 (297). These two scaffolding 

domains have been hypothesized to interact with the MCT1-associated cofactor basigin 

(CD147; (297)). Basigin acts as a chaperone to assist MCT1 localization to the plasma 
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membrane (298), but its continued interaction with MCT1 and MCT4 is also important 

for transport activity (299). It is tempting to speculate that this cofactor may affect MCT 

conformational changes by coordinating scaffolding domains of the transporter.

 It would be interesting to determine which of the other MCTs display accelerated 

exchange transport, in addition to completing this analysis in the Class II and III GLUTs. 

While TM6 may not be operant in trans-acceleration among all these transporter 

isoforms, it is possible that a symmetric or homologous scaffolding domain is critical for 

this behavior. Further sequence comparisons among transporters that catalyze trans-

acceleration may add to the understanding of interactions between TMs and their impact 

on the carrier transport cycle. Furthermore, extending this analysis to include comparing 

endogenous expression patterns of trans-accelerating carriers may yield additional 

insights. For example, MCTs also exhibit tissue-specific distribution. While both MCT1 

and MCT4 display accelerated-exchange, MCT1, like GLUT1, is a basally expressed 

transporter with high levels detected in erythrocytes and oxidative muscle cells. MCT4, 

however, is expressed mostly in glycolytic cells of the heart and muscle (300). While not 

enough information is currently available, the continued characterization of differences in 

transporter kinetics and distribution will provide insight into the adaptive advantages of 

the distinct expression of transporter isoforms. While the variety of transporter substrate 

specificity, affinity, and catalytic efficiency are critical to the global homeostasis of 

metabolites, capacity for accelerated-exchange transport may be as well.
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 The physiological significance of trans-acceleration could be analyzed further 

through genetic manipulation of a model organism. For example, the loss-of-function 

GLUT1 (6, G4) mutant transporter could be expressed in transgenic mice, particularly in 

tissues where rapid equilibration is hypothesized to be critical (e.g. muscle cells, or 

endothelial barriers in the brain, retina, placenta, or lactating mammary gland). Possible 

phenotypes would include decreased function at these sites, such as impaired muscle 

contraction or endurance, seizures, loss of consciousness, impaired vision, retardation of 

fetal growth, or decreased milk production. Such in vivo studies would only serve to 

underscore both the importance of rapid equilibration in global glucose homeostasis, and 

the related expression and function of transporters which catalyze trans-acceleration.
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APPENDIX

Table A1 Primers Used in Molecular Cloning and Mutant Construct Creation

Construct Primer(s) 

WT GLUT1 
5’FWD EcoRV

CGATATCATGGAGCCCAGCAGCAAG

WT GLUT1 
3’REV Not1

AGCGGCCGCTCATCACACTTGGGAATC

GLUT1 myc 
5’FWD

GAGCAAAAGCTTATTTCTGAAGAGGACTTGCTGCCCACCACGCT
CACC

GLUT1 myc 
3’REV

CAAGTCCTCTTCAGAAATAAGCTTTTGCTCGATGCTCTCCCCATA
GCG

WT GLUT4 5’FWD EcoRV CGATATCATGCCGTCGGGCTTC

WT GLUT4 3’REV Not1 AGCGGCCGCTCATCAGTCGTTCTCATC 

GLUT4 myc 5’FWD GAGCAAAAGCTTATTTCTGAAGAGGACTTGCCTCCAGGCACCCT
CACC

GLUT4 myc 3’REV CAAGTCCTCTTCAGAAATAAGCTTTTGCTCGATGGAGCTGGGTCC
CTC

GLUT4 F5A Quick Change 
5’FWD

GCAGATATGCCGTCGGGCGCCCAACAGATAGGCTCCGAAGATGG
G

GLUT4 LL489/490AA
Quick Change 
5’FWD

CCTTCCACCGGACACCCTCTGCTGCAGAGCAGGAGGTGAAACCC

GLUT4 F5A 
5’FWD EcoRV

CGATATCATGCCGTCGGGCGCC

11(1)44 5’FWD CTGGAGCTGTTCCGCTCCCCCACCCA
WT GLUT1 5’FWD EcoRV

11(1)44 3’REV GATCAGGGGCTGCCGGTGGGTGGGG
WT GLUT4 3’REV Not1

11(4)44 5’FWD TGCATCGTGCTGCCCTTCTGCCCCGA
WT GLUT1 5’FWD EcoRV

11(4)44 3’REV GAGGTAGCGGGGGCTCTCGGGGCAG
WT GLUT4 3’REV Not1

44(1)11 5’FWD CTGGTCCTGCTGCCCTTCTGTCCCGA
GLUT4 F5A 5’FWD EcoRV

44(1)11 3’REV CAGGAAGCGGGGACTCTCGGGACAG
WT GLUT1 3’REV Not1

44(6)11 5’FWD CTCCAGCTCCTGGGCAGCCGTGCCT
GLUT4 F5A 5’FWD EcoRV

44(6)11 3’REV GAGGATGGGCTGGCGGTAGGCACGG 
WT GLUT1 3’REV Not1

1444 5’FWD TCGAAACTGGGCAAGTCCTTTGAAAT
WT GLUT1 5’FWD EcoRV

1444 3’REV TCGTCCAAGGATGAGCATTTCAAAGG
WT GLUT4 3’REV Not1

4111 5’FWD GCCAATGCTGCTGCCTCCTATGAGAT
GLUT4 F5A 5’FWD EcoRV
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4111 3’REV GCGGCCCAGGATCAGCATCTCATAG
WT GLUT1 3’REV Not1

1411 5’FWD WT GLUT1 5’FWD EcoRV 
1444 5’FWD
44(1)11 5’FWD

1411 3’REV 1444 3’REV
44(1)11 3’REV
WT GLUT1 3’REV Not1

4144 5’FWD GLUT4 F5A 5’FWD EcoRV
4111 5’FWD
11(4)44 5’FWD

4144 3’REV 4111 3’REV
11(4)44 3’REV
WT GLUT4 3’REV Not1

G4 (4/5) 5’FWD GLUT4 F5A 5’FWD EcoRV
4111 5’FWD
ATGGGCAACAAGGACCTGTGGCCAC

G4 (4/5) 3’REV 4111 3’REV
TGTGAGGCCCAGGAGCAGTGGCCAC
WT GLUT4 3’REV Not1

G4 (5/6) 5’FWD GLUT4 F5A 5’FWD EcoRV
GTGGGGGAGATTGCTCCCACTGCCC
11(4)44 5’FWD

G4 (5/6) 3’REV GCCCAGGGCCCCACGAAGGGCAGTG
11(4)44 3’REV
WT GLUT4 3’REV Not1

G4 (5) 5’FWD GLUT4 F5A 5’FWD EcoRV
G4 (5/6) 5’FWD
G4 (4/5) 5’FWD

G4 (5) 3’REV G4 (5/6) 3’REV
G4 (4/5) 3’REV
WT GLUT4 3’REV Not1

G4 (6) 5’FWD GLUT4 F5A 5’FWD EcoRV
CTGGGCACTGCCAGCCTGTGGCCCC
11(4)44  5’FWD

G4 (6) 3’REV GATGATGCTCAGCAGCAGGGGCCAC
11(4)44 3’REV
WT GLUT4 3’REV Not1

G1 (6) 5’FWD WT GLUT1 5’FWD EcoRV
G4 (4/5) FWD
44(1)11 5’FWD

G1 (6) 3’REV G4 (4/5) 3’REV
44(1)11 3’REV
WT GLUT1 3’REV Not1

GLUT1 SIIFI 191-195 GLTVL
Quick Change 5’FWD

TGGCCCCTGCTGCTGGGCCTCACAGTGCTACCGGCCCTGCTG

GLUT1 CIV 202-204 LVL
Quick Change 5’FWD

CCGGCCCTGCTGCAGCTGGTCCTGCTGCCCTTCTGTCCC

GLUT4 GLTVL 208-212 SIIFI
Quick Change 5’FWD

TGGCCACTGCTCCTGAGCATCATCTTCATCCCTGCCCTCCTGCAG
C 

GLUT4 LVL 218-220 CIV
Quick Change 5’FWD

CCTGCCCTCCTGCAGTGCATCGTGCTGCCCTTCTGTCCC  

GLUT2
5’FWD EcoRV

CGATATCATGACAGAAGATAAGGTC 
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GLUT2
3‘REV Not1

AGCGGCCGCTCATTACACAGTCTCTGT  

GLUT2 myc
3’REV

CAAGTCCTCTTCAGAAATAAGCTTTTGCTCATGTCTATAGTGAGA

GLUT2 myc
5’FWD

GAGCAAAAGCTTATTTCTGAAGAGGACTTGGTTTTGGGTGTTCC
ACTG

GLUT2 cG1
5’FWD

ACCAAAGGAAAGTCTTTTGAGGAGATCGCTTCCGGCTT 

GLUT2 cG1
3‘REV Not1

AAGCCGGAAGCGATCTCCTCAAAAGACTTTCCTTTGGT 

WT GLUT3
5’FWD BamH1

CGGATCCATGGGGACACAGAAGGTC

WT GLUT3
3‘REV Not1

AGCGGCCGCTCATTAGACATTGGTGGT

GLUT3 myc
3‘REV 

CAAGTCCTCTTCAGAAATAAGCTTTTGCTCCTTGTCCGTCAAAGT    

GLUT3 myc
5’FWD

GAGCAAAAGCTTATTTCTGAAGAGGACTTGGGAAATGCCCCACC
CTCT

GLUT3 cG1
5’FWD

ACCCGTGGCAGGACTTTTGAGGAGATCGCTTCCGGCTT 

GLUT3 cG1
3‘REV Not1

AAGCCGGAAGCGATCTCCTCAAAAGTCCTGCCACGGGT 

GLUT2 GLSGV 223-227 
SIIFI/SLL 233-235 CIV
5‘FWD EcoRV

AGCATCATCTTCATCAGGGCTATTCTACAATGCATCGTGCTCTTTT
TCTGTCCAGAA 

GLUT2 GLSGV 223-227 
SIIFI/SLL 233-235 CIV
3‘REV Not1

CACGATGCATTGTAGAATAGCCCTGATGAAGATGATGCTAAGCAG
GATGTGCCA

GLUT2 GLSGV 223-227 
GFTIL/SLL 233-235 SAA
5‘FWD EcoRV

GGTTTTACCATCCTTAGGGCTATTCTACAAAGTGCAGCCCTCTTTT
TCTGTCCAGAA

GLUT2 GLSGV 223-227 
GFTIL/SLL 233-235 SAA
3‘REV Not1

GGCTGCACTTTGTAGAATAGCCCTAAGGATGGTAAAACCAAGCA
GGATGTGCCA 

GLUT3 GFTIL 189-193 
GLSGV/SAA 199-201 SLL
5‘FWD BamHI

GGCCTGTCTGGTGTGCCAGCAATTTTGCAGTCTCTGCTACTTCCA
TTTTGCCCTGAA  

GLUT3 GFTIL 189-193 
GLSGV/SAA 199-201 SLL 
3‘REV Not1

TAGCAGAGACTGCAAAATTGCTGGCACACCAGACAGGCCCAGTA
GCAGCGGCCA

GLUT3 GFTIL 189-193 
GLTVL/SAA 199-201 LVL
5‘FWD BamHI

GGCCTCACAGTGCTACCAGCAATTTTGCAGCTGGTCCTGCTTCCA
TTTTGCCCTGAA 

GLUT3 GFTIL 189-193 
GLTVL/SAA 199-201 LVL
3‘REV Not1

CAGGACCAGCTGCAAAATTGCTGGTAGCACTGTGAGGCCCAGTA
GCAGCGGCCA   
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Table A2 Primers Used in Genomic/RT-PCR and Q-PCR GLUT Screens 

Mouse GLUT1 RT 5’FWD GAACCTGTTGGCCTTTGTGGC

Mouse GLUT1 RT 3’REV GCTGGCGGTAGGCGGGTGAGCG

Mouse GLUT4 RT 5’FWD TGCAACGTGGCTGGGTAGGC

Mouse GLUT4 RT 3’REV AGGGAGTACTGTGAGAGCCAG

Mouse GLUT1 Q 5’FWD AGCCCTGCTACAGTGTAT

Mouse GLUT1 Q 3’REV AGGTCTCGGGTCACATC

Mouse EIF1α CAACATCGTCGTAATCGGACA

Mouse EIF1α  GCTTAAGACCCAGGCGTACTT

Human GLUT Genomic/RT- and Q-PCR PrimersHuman GLUT Genomic/RT- and Q-PCR Primers

GLUT1 RT 5’FWD GCGGAATTCAATGCTGATGA

GLUT1 RT 3’REV TCTTGGCCCGGTTCTCCTCG 

GLUT2 RT 5’FWD TACCTTTACATCAAGTTAGA 

GLUT2 RT 3’REV TAGAATAGGCTGTCGGTAGC

GLUT3 RT 5’FWD CTGCGGACTCTGCACAGGTT 

GLUT3 RT 3’REV TTTCTGTTAATGAGCAAAAA

GLUT4 RT 5’FWD CCCCGCCCGGCAGCCATGGC

GLUT4 RT 3’REV AGAGAGGGTGTCCGGTGGAA

GLUT5 RT 5’FWD AGGCTGACGCTTGTGCTTGC

GLUT5 RT 3’REV TGCCAAATTTATTCACCAAG  

GLUT6 RT 5’FWD AGGGGCGGAGCCTGGCCGGT      

GLUT6 RT 3’REV AGACCAGGGCATACCCAAAG

GLUT7 RT 5’FWD AAAGGGGACCCTGCTGATCA 

GLUT7 RT 3’REV CCGGGTTGCCCAAGATGGCC

GLUT8 RT 5’FWD CGCGCCCCGCGGCCGCCGCG

GLUT8 RT 3’REV AGGCTCAGCTTGCGCCCGGC

GLUT9 RT 5’FWD GGTTTGGTCATTGAGCACCT 

GLUT9 RT 3’REV CTGGCCCACTGCAGAAAGAG 

GLUT10 RT 5’FWD CTGGAGACTCTGGCCTGCTG 

GLUT10 RT 3’REV CCAGTTGAAGCTGTTGCAGA

GLUT11 RT 5’FWD GTGTGAGCATGAACATCCAG
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GLUT11 RT 3’REV GGGAGGCGAGCTGGAGCGCC

GLUT12 RT 5’FWD TAACTTCTAGCATGAACTGG

GLUT12 RT 3’REV TATAAACATAACAACAAAAA 

GLUT13 RT 5’FWD CAGGTGTGAAAATGAAACCA  

GLUT13 RT 3’REV ATACTCTGCTGTGTGTAAAA

GLUT1 Q 5’FWD ATCGTGGCCATCTTTGGCTTTGTG 

GLUT1 Q 3’REV CTGGAAGCACATGCCCACAATGAA 

GLUT3 Q 5’FWD AGCTCTCTGGGATCAATGCTGTGT  

GLUT3 Q 3’REV ATGGTGGCATAGATGGGCTCTTGA 

GLUT4 Q 5’FWD AAGAATCCCTGCAGCCTGGTAGAA

GLUT4 Q 3’REV CCACGGCCAAACCACAACACATAA  

GLUT6 Q 5’FWD GCTCGGCAATTTCAGCTTTGGGTA 

GLUT6 Q 3’REV  TGGGATTTGGTCAGATGCAGGTCA 

GLUT8 Q 5’FWD AGGGTTTATTCCCATCACTGCCCA    

GLUT8 Q 3’REV TGAGCCCAAGGAAGTAGCCAGAAA

GLUT9 Q 5’FWD TTCTGGCCATCATCGCCTCTTTCT

GLUT9 Q 3’REV GTTGACGGTGCCTGCAATGATGAA 

GLUT10 Q 5’FWD AAGAGACGGTTCACCCTGAGCTTT

GLUT10 Q 3’REV TCCAGAATTTCCAGGCAGACGGAT

GAPDH Q 5’FWD GAAGGTGAAGGTCGGAGTC 

GAPDH Q 3’REV GAAGATGGTGATGGGATTTC

GLUT1MYC 114 Q 5’FWD GGTGATCGAGGAGTTCTACAACCAGA

GLUT1MYC 278 Q 3’REV ACAGAGAAGGAGCCAATCATGC 

GLUT4MYC 158 Q 5’FWD AACAGAGCTACAATGAGACGTGGCTG 

GLUT4MYC 355 Q 3’REV TCCTTCCAAGCCACTGAGAGATGA 
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Table A3 Calculated Product Size of Human GLUT-Specific Genomic Primers 
in PCR Screening of Genomic DNA and RT-PCR Screening of 
RNA 

GLUT Genomic DNA
Product Size (bp)

RT-PCR
Product Size (bp)

mRNA
Detection

1 990 400 Y
2 652 184
3 862/850 242 Y
4 657 223 Y
5 802 259
6 817 267 ?
7 1107 275
8 609/998 248 Y
9 3145 422
10 882 343 Y
11 758 210
12 4824 142 ?
13 4379/386 265
14 1130 173 ?

All product sizes indicated are based on primers reported in Appendix Table A2. For transporters with 
extremely faint product bands (Appendix Figure A3.1) or inability to verify primers via genomic DNA PCR 
screening, specific qPCR primers were designed (Table A2) and these transporters were included in qPCR 
analysis of HEK endogenous transporter expression (Figure 3.2).
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Table A4 Calculated Molecular Weight and Isoelectric Point of Chimeras

Construct Calculated MW (Da) Calculated PI
GLUT1 54084 8.93

GLUT1myc 54787 6.47
GLUT4 55269 8.43

GLUT4myc 55973 5.75
GLUT4myc-3x 55812 5.75

44(1)11 56114 5.94
11(1)44 55204 7.65
44(4)11 55877 6.05
11(4)44 54968 8.19

1444 54728 8.33
4111 56353 5.94
1411 55030 8.55
4144 56052 5.75

GLUT4 (4,5 G1) 55972 5.75
GLUT4 (5,6 G1) 55957 5.75
GLUT4 (5, G1) 55877 5.75
GLUT4 (6, G1) 55892 5.75
GLUT1 (6, G4) 55189 8.48

Molecular weight and isoelectric point were calculated for each chimera sequence using the Bioinformatics 
Resource Portal ExPASy calculator (http://web.expasy.org/compute_pi/).

213

http://web.expasy.org/compute_pi/
http://web.expasy.org/compute_pi/


Zero Trans vs Hetero-Exchange Uptake of 
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Figure A3.1 Analysis of hetero-exchange uptake in 3T3-L1 Fibroblasts 

A, Time course of 100 µM 2-DG uptake in 3T3-L1 fibroblasts at 37ºC. Amount of uptake 
of 3[H]-2-DG was corrected for background, normalized to total protein concentration 
(ordinate) and plotted for the length of time of uptake (abscissa). Data are plotted as 
mean ± SEM for n=2 assays. Curves drawn through the data were computed by nonlinear 
regression assuming that uptake is described by Equation 2.1, with R2 = 0.9577. B, 
Comparison of zero-trans and hetero-exchange uptake of 100 µM 2-DG from medium 
containing 10-40 mM 3-MG, normalized to total protein concentration (ordinate) in 
fibroblasts pre-loaded with 10-40 mM 3-MG (abscissa). Data are plotted as mean ± SEM 
for n=2 assays. Uptake was performed at 3 minutes at 37ºC.
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Figure A3.2 Primer verification and RT-PCR screen of GLUTs expressed in HEK 
cells 

A, Genomic primers against all 14 GLUTs were designed such that a PCR screen of HEK 
genomic DNA would yield products of a large size for verification (Appendix Table A2). 
Genomic DNA was prepared according to the Qiagen Genomic DNA Purification kit and 
1 µg DNA per reaction was analyzed by PCR using both Taq (top panel) and Vent 
(bottom panel) polymerases. Products were resolved on a 1.5% ethidium bromide gel and 
visualized by UV light. Target product size bands are boxed in red. B, The same primers 
verified in A were used to analyze HEK mRNA in an RT-PCR screen for smaller size 
products indicative of message (Table A2). HEK mRNA was isolated and prepared 
according to the Qiagen RNeasy kit. RT-PCR was performed according to the Qiagen 
One-Step RT-PCR kit using 1 µg RNA per reaction. Products were resolved on a 1.5% 
ethidium bromide gel and visualized by UV light. Target product size bands are boxed in 
red. In cases where large intron-exon spacing complicated the design of genomic primers, 
multiple primers were tested (i.e. GLUT13). Any RT-PCR products detected in B were 
then screened by qPCR (Figure 3.2). In the case where a genomic primer could not be 
verified or detected in RT-PCR screens (i.e. GLUT12), this transporter was included in 
the qPCR analysis.
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Time Course of 100 µM 2-DG/40 mM 3-MG Hetero-Exchange 
Uptake in GLUT1-Transfected HEK Cells
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Figure A3.3 Time course of 2-DG/3-MG uptake under hetero-exchange 
  conditions 

Uptake of 100 µM 2-DG from medium containing 40 mM 3-MG in GLUT1-transfected 
HEK cells pre-loaded with 40 mM 3-MG. Uptake was corrected for background, mock-
subtracted and normalized to total protein concentration (ordinate), and plotted for the 
length of time of uptake (abscissa). Lines drawn through the data were computed by 
linear regression. Data are plotted as mean ± SEM for n=3 assays. 
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Zero-trans Uptake of 100 µM 2DG in HEK Cells 
Transfected with Increasing [GLUT4myc]
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Figure A3.4 Sugar uptake in HEK cells transfected with increasing [GLUT4] 
 

Zero-trans uptake of 100 µM 2-DG was corrected for background, mock-subtracted, 
normalized to total protein concentration (ordinate) and plotted for HEK cells transfected 
with 1, 2, 4, or 10 µg [GLUT4myc] DNA (abscissa). For reference, the standard amount 
of [GLUT1myc] transfected in all assays (2 µg) was included. Data are plotted as mean ± 
SEM for n=2 assays. 
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Figure A3.5 Verification of cell-surface expression of transporters with 3 
mutations to GLUT4 localization motifs 

HEK cells were either mock-transfected (M) or transfected with GLUT1myc (G1), 
GLUT4myc (G4), or 3 of the surface expression mutants of GLUT4myc (F5A, 
LL489-490AA (LL), or both mutations (2x)). Cells were biotinylated at 4ºC, and surface-
labeled proteins were affinity-purified on streptavidin beads. Lysates were resolved by 
SDS-PAGE and blotted with anti-myc antibody (A). Both anti-GLUT1 C-terminal 
antibody (B) and anti-GLUT4 C-terminal antibody (C) were used to verify identity of the 
construct. Mobility of molecular weight standards is indicated.
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Figure A3.6 Relative expression of myc-tagged transfected construct mRNA by 
qPCR 

Primers designed against both GLUT transporter sequence and the incorporated myc tag 
(Appendix Table A2) were used to analyze the relative amount of transfected message in 
RNA isolated from HEK cells transfected with 2 µg of DNA. RNA was prepared 
according to the Qiagen RNeasy kit and qPCR was performed according to the BioRad 
SYBRgreen qPCR kit. Relative expression normalized to GLUT1 (ordinate) is plotted for 
each of the main constructs used for TM6 comparisons (abscissa). Results are plotted as 
mean ± SEM for n=3 assays. 
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Figure A3.7 Variations in chimera protein expression detected by Western 
blot 

HEK cells were transfected with the constructs indicated and whole cell lysates were 
extracted and resolved by SDS-PAGE. Western blots were dually probed with anti-myc 
antibody (A) and GAPDH antibody as a loading control. The identity of all chimeras was 
also verified by blotting with anti-C-terminal antibodies for GLUT1 and GLUT4. 
Mobility of molecular weight markers is indicated. B, Bands from A were quantitated by 
densitometry. C, HEK cells transfected with the constructs indicated were biotinylated at 
4ºC. Cell-surface proteins were pulled down on streptavidin columns and resolved by 
SDS-PAGE. Cell surface expression of chimeras was detected by blotting with anti-myc 
antibody. Variations in apparent molecular weight of each construct correlate with 
variations in calculated molecular weight and isoelectric point, as determined by 
sequence-based calculations (Appendix Table A4). 

224



GLU
T1m

yc

44
(1)

11

11
(1)

44

44
(4)

11

11
(4)

44
14

44
41

11
14

11
41

44

G4(4
/5)
G4(5

)
G4(6

)
G1(6

)
0

1

2

3

N
or

m
al

iz
ed

 U
pt

ak
e 

(%
)

Figure A3.8 Variations in chimera expression detected by sugar transport 

Zero-trans uptake of 100 µM 2-DG was performed at 5 minutes at 37ºC in HEK cells 
transfected with the constructs indicated (abscissa). Amount of uptake was mock-
subtracted, corrected for background, normalized to total protein content, and normalized 
to uptake by GLUT1myc (ordinate). 
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Figure A3.9 Immunofluorescence microscopy of permeabilized HEK cells 
expressing myc-tagged GLUT1 

Two fields of view at 100x (A, B) representative of areas which showed positive staining 
for GLUT1myc in transfected HEK cells. Cells were fixed with 4% formaldehyde at 4ºC, 
permeabilized with 0.5% Triton X-100 with 1%FBS, and incubated overnight with anti-
myc antibody (9E10 at 1:1000). An alexa 488-conjugated secondary antibody was used to 
detect anti-myc signal (green). Cells were mounted with Vetcashield containing DAPI 
staining (blue) for nuclear localization. Mock-transfected cells showed no alexa 488-
associated signal. Non-permeabilizing modifications to detect only surface myc-tagged 
transporters showed either no staining or diffuse non-specific staining.
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