45 research outputs found

    Deficiencies in the Mitochondrial Electron Transport Chain Affect Redox Poise and Resistance Toward Colletotrichum higginsianum

    Get PDF
    To investigate if and how the integrity of the mitochondrial electron transport chain (mETC) influences susceptibility of Arabidopsis toward Colletotrichum higginsianum, we have selected previously characterized mutants with defects at different stages of the mETC, namely, the complex I mutant ndufs4, the complex II mutant sdh2-1, the complex III mutant ucr8-1, and a mutant of the uncoupling protein ucp1-2. Relative to wild type, the selected complex I, II, and III mutants showed decreased total respiration, increased alternative respiration, as well as increased redox charge of the NADP(H) pool and decreased redox charge of the NAD(H) pool in the dark. In the light, mETC mutants accumulated free amino acids, albeit to varying degrees. Glycine and serine, which are involved in carbon recycling from photorespiration, and N-rich amino acids were predominantly increased in mETC mutants compared to the wild type. Taking together the physiological phenotypes of all examined mutants, our results suggest a connection between the limitation in the re-oxidation of reducing equivalents in the mitochondrial matrix and the induction of nitrate assimilation into free amino acids in the cytosol, which seems to be engaged as an additional sink for reducing power. The sdh2-1 mutant was less susceptible to C. higginsianum and did not show hampered salicylic acid (SA) accumulation as previously reported for SDH1 knock-down plants. The ROS burst remained unaffected in sdh2-1, emonstrating that subunit SDH2 is not involved in the control of ROS production and SA signaling by complex II. Moreover, the ndufs4 mutant showed only 20% of C. higginsianum colonization compared to wild type, with the ROS burst and the production of callose papillae being significantly increased compared to wild type. This indicates that a restriction of respiratory metabolism can positively affect pre-penetration resistance of Arabidopsis. Taking metabolite profiling data from all investigated mETC mutants, a strong positive correlation of resistance toward C. higginsianum with NADPH pool size, pyruvate contents, and other metabolites associated with redox poise and energy charge was evident, which fosters the hypothesis that limitations in the mETC can support resistance at post-penetration stages by improving the availability of metabolic power

    EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts

    Get PDF
    Weber APM, Oesterhelt C, Gross W, et al. EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology. 2004;55(1):17-32.When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degreesC. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria, 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria

    Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction

    Get PDF
    AbstractBackgroundBone marrow transplantation (BMT) is commonly used in experimental studies to investigate the contribution of BM-derived circulating cells to different disease processes. During studies investigating the cardiac response to acute myocardial infarction (MI) induced by permanent coronary ligation in mice that had previously undergone BMT, we found that BMT itself affects the remodelling response.Methods and resultsCompared to matched naive mice, animals that had previously undergone BMT developed significantly less post-MI adverse remodelling, infarct thinning and contractile dysfunction as assessed by serial magnetic resonance imaging. Cardiac rupture in male mice was prevented. Histological analysis showed that the infarcts of mice that had undergone BMT had a significantly higher number of inflammatory cells, surviving cardiomyocytes and neovessels than control mice, as well as evidence of significant haemosiderin deposition. Flow cytometric and histological analyses demonstrated a higher number of alternatively activated (M2) macrophages in myocardium of the BMT group compared to control animals even before MI, and this increased further in the infarcts of the BMT mice after MI.ConclusionsThe process of BMT itself substantially alters tissue macrophage phenotype and the subsequent response to acute MI. An increase in alternatively activated macrophages in this setting appears to enhance cardiac recovery after MI

    Nutritional factors modulating plant and fruit susceptibility to pathogens: BARD workshop, Haifa, Israel, February 25–26, 2018

    Get PDF
    32 p.-3 fig.The molecular dialog between fungal pathogens and their plant hosts is governed by signals from the plant, secreted pathogen effectors and enzymes, and the plant immune system. There is an increasing awareness that nutritional factors are also central to fungal-plant interactions. Nutritional factors include carbon and nitrogen metabolism, local pH and redox state, and manipulation of host metabolism by secreted pathogen effectors. A diverse combination of approaches from genetics, biochemistry and fungal and plant cell biology addresses these questions, and a workshop whose abstracts accompany this note was held in 2018 to bring these together. Questions were asked about how the lifestyles and nutritional strategies of eukaryotic filamentous phytopathogens are related to the metabolic architectures and pathogenic processes affecting both plant hosts and their pathogens. The aim for future work will be to provide metabolism-based strategies for pathogen control.We thank the US-Israel Binational Agricultural Research and Development Fund (BARD) for funding the workshop (number W-104-17).Peer reviewe

    Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease. Genome-wide association studies (GWASs) have identified more than 50 loci as robustly associated with the disease in single ancestries, but genome-wide transancestral studies have not been conducted. We combined three GWAS data sets from Chinese (1,659 cases and 3,398 controls) and European (4,036 cases and 6,959 controls) populations. A meta-analysis of these studies showed that over half of the published SLE genetic associations are present in both populations. A replication study in Chinese (3,043 cases and 5,074 controls) and European (2,643 cases and 9,032 controls) subjects found ten previously unreported SLE loci. Our study provides further evidence that the majority of genetic risk polymorphisms for SLE are contained within the same regions across both populations. Furthermore, a comparison of risk allele frequencies and genetic risk scores suggested that the increased prevalence of SLE in non-Europeans (including Asians) has a genetic basis

    Engineering Synthetic Metabolons: From Metabolic Modelling to Rational Design of Biosynthetic Devices

    Get PDF
    The discipline of Synthetic Biology has recently emerged at the interface of biology and engineering. The definition of Synthetic Biology has been dynamic over time ever since, which exemplifies that the field is rapidly moving and comprises a broad range of research areas. In the frame of this Research Topic, we focus on Synthetic Biology approaches that aim at rearranging biological parts/ entities in order to generate novel biochemical functions with inherent metabolic activity. This Research Topic encompasses Pathway Engineering in living systems as well as the in vitro assembly of biomolecules into nano- and microscale bioreactors. Both, the engineering of metabolic pathways in vivo, as well as the conceptualization of bioreactors in vitro, require rational design of assembled synthetic pathways and depend on careful selection of individual biological functions and their optimization. Mathematical modelling has proven to be a powerful tool in predicting metabolic flux in living and artificial systems, although modelling approaches have to cope with a limitation in experimentally verified, reliable input variables. This Research Topic puts special emphasis on the vital role of modelling approaches for Synthetic Biology, i.e. the predictive power of mathematical simulations for (i) the manipulation of existing pathways and (ii) the establishment of novel pathways in vivo as well as (iii) the translation of model predictions into the design of synthetic assemblies

    The Arabidopsis phenylalanine insensitive growth Mutant Exhibits a Deregulated Amino Acid Metabolism

    No full text
    Amino acids and amino acid analogs have been used in numerous genetic screens to isolate mutants deficient in amino acid biosynthetic pathways or in the regulation of amino acid metabolism. Several of these mutants exhibit relaxed feedback control of branched amino acid biosynthetic pathways and are thus resistant to accumulation of pathway end products. For example, feedback-regulated enzymes of the shikimate pathway are anthranilate synthase on the branch leading to Trp and chorismate mutase on the branch leading to Phe and Tyr. A feedback-insensitive mutant of anthranilate synthase α, trp5-1, is resistant to toxic Trp analogs. Mutants resistant to Phe have not previously been reported, and this article describes the isolation of the recessive Arabidopsis Phe insensitive growth mutant pig1-1 by a forward genetic screen. pig1-1 was not only tolerant to Phe, Tyr, and Trp, but also to other, not biosynthetically related amino acids. Amino acid contents in pig1-1 were significantly elevated with respect to wild-type controls but, in contrast to the wild type, dramatically decreased when plants were supplemented with 2 mm Phe. Protein contents were similar in the mutant and the wild type at all tested conditions. Phe catabolism was similar to the wild type in pig1-1 roots but was significantly increased in pig1-1 shoots. Phenylalanine uptake into the root, its root-to-shoot translocation, and Phe and phenylpropanoid contents were unaltered in pig1-1, indicating that pig1-1 is not affected in amino acid translocation or the shikimate pathway. Instead, the response of pig1-1 toward amino acid feeding indicates that amino acid metabolism is generally deregulated in pig1-1

    Sugar accumulation in leaves of arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response

    No full text
    In compatible interactions, biotrophic microbial phytopathogens rely on the supply of assimilates by the colonized host tissue. It has been found in rice that phloem localized SWEET sucrose transporters can be reprogrammed by bacterial effectors to establish compatibility. We observed that sweet11/sweet12 double mutants, but not single mutants, exhibited increased resistance toward the fungal hemibiotroph Colletotrichum higginsianum (Ch), both in the biotrophic and the necrotrophic colonization phase. We therefore investigated if the phloem localized transporters AtSWEET11 and AtSWEET12 represent additive susceptibility factors in the interaction of Arabidopsis with Ch. AtSWEET12-YFP fusion protein driven by the endogenous promoter strongly accumulated at Ch infection sites and in the vasculature upon challenge with Ch. However, susceptibility of sweet12 single mutants to Ch was comparable to wild type, indicating that the accumulation of AtSWEET12 at Ch infection sites does not play a major role for compatibility. AtSWEET12-YFP reporter protein was not detectable at the plant–pathogen interface, suggesting that AtSWEET12 is not targeted by Ch effectors. AtSWEET11-YFP accumulation in pAtSWEET11:AtSWEET11-YFP plants were similar in Ch infected and mock control leaves. A close inspection of major carbohydrate metabolism in non-infected control plants revealed that soluble sugar and starch content were substantially elevated in sweet11/sweet12 double mutants during the entire diurnal cycle, that diurnal soluble sugar turnover was increased more than twofold in sweet11/sweet12, and that accumulation of free hexoses and sucrose was strongly expedited in double mutant leaves compared to wild type and both single mutants during the course of Ch infection. After 2 days of treatment, free and conjugated SA levels were significantly increased in infected and mock control leaves of sweet11/sweet12 relative to all other genotypes, respectively. Induced genes in mock treated sweet11/sweet12 leaves were highly significantly enriched for several GO terms associated with SA signaling and response compared to mock treated wild-type leaves, indicating sugar-mediated priming of the SA pathway in the double mutant. Infection assays with salicylic acid deficient sweet11/sweet12/sid2 triple mutants demonstrated that reduced susceptibility observed in sweet11/sweet12 was entirely dependent on the SA pathway. We suggest a model how defects in phloem loading of sucrose can influence SA priming and hence, compatibility
    corecore