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Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex 46 

autoimmune disease. Over 50 loci have been found to be robustly associated by 47 

GWAS in single ethnicities. We combined three GWAS’ datasets from two ethnicities: 48 

Chinese (1,659 cases and 3,398 controls) and European (4,036 cases and 6,959 49 

controls). A meta–analysis of these studies found that over half of the published SLE 50 

genetic associations are present in both populations. A replication study in the 51 

Chinese (3,043 cases and 5,074 controls) and Europeans (2,643 cases and 9,032 52 

controls) found 10 novel SLE loci. Our study reveals further evidence that the majority 53 

of genetic polymorphisms exerting risk for SLE are contained within the same regions 54 

across the Chinese and European populations. Furthermore, comparing risk allele 55 

frequencies and genetic risk scores suggests that the increased prevalence of SLE in 56 

non–Europeans (including Asians) has a genetic basis.    57 

SLE is a highly complex disease, with occurrence heavily influenced by genetics 58 

(heritability=66%1). SLE incidence varies markedly across populations, with Europeans 59 

showing 3�4 fold lower prevalence compared with individuals of African or Asian ancestry2. 60 

In recent years, our understanding of SLE genetic aetiology has been transformed by 61 

GWAS, with the largest study in Europeans (4,036 cases and 6,959 controls)3 finding 62 

evidence of association at 41 autosomal loci. Meanwhile, there have been two published 63 

GWAS4,5 in Chinese populations and follow up studies in Asians6-10 that found association at 64 

31 loci, 11 of which are not published in Europeans. Thus 52 SLE disease susceptibility 65 

autosomal loci have been mapped by GWAS in these two populations.  66 

While fine mapping of a selected number of known SLE associated loci11-13 has been 67 

successfully undertaken by combining genetic results obtained from association mapping in 68 

different populations, to date transancestral approaches have not been employed at 69 

genome-wide level in SLE. Studies of other diseases14 have also shown the benefit of 70 

comparing data from differing ancestries to exploit differences in LD.  71 
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Our initial objective was to compare observed genetic association signals across the 72 

genome in Chinese and Europeans. To provide additional power to identify potentially novel 73 

SLE associated loci we imputed each GWAS [A European study: 4,036 cases and 6,959 74 

Controls3 (ȜGC=1.16 with Ȝ1,000=1.02); a study from Anhui province in mainland China: 1,047 75 

cases and 1,205 Controls4 (ȜGC=1.05) and a study from Hong Kong: 612 cases and 2,193 76 

Controls5,7 (ȜGC=1.04)] to the density of the 1000 Genomes (1KG) data (see Online 77 

Methods). Analyses of association results in each population suggested that SLE 78 

susceptibility loci were shared extensively. Manhattan plots showing these similarities are 79 

presented in Fig. 1, where it can be seen that the association signals are mostly mirrored 80 

between populations. Details of the association data for individual SNPs are presented in 81 

Supplementary Table 1. Comparing the published genome-wide significant allelic 82 

associations in SLE, we see that many of the alleles hitherto thought to be associated with 83 

SLE in only one population have evidence for association in both European and Chinese 84 

SLE. Ranking genomic regions based on strength of association, we also find a significant 85 

correlation (P=2.7×10�9, Kendall�s Tau=0.08, see methods) between the two populations� 86 

GWAS. These observations suggested that combining GWAS data in a meta�analysis would 87 

likely yield novel association signals. Fig. 1b shows a Manhattan plot of the GWAS meta�88 

analysis results, which included three associations in novel loci (rs17603856 6p23; 89 

rs1887428 [9p24]; rs669763 [16q13]) with genome wide level of significance (P<5×10�08).  In 90 

addition, it can be seen in this Figure that the Major Histocompatibility Complex (MHC) and 91 

to a lesser extent the IRF5 locus on chromosome 7, exhibit significant trans�ancestral 92 

heterogeneity. 93 

We then carried out a two�stage replication study, incorporating rs17603856, rs1887428 and 94 

rs669763. The 1KG-imputed data were scanned for association at loci independent of those 95 

previously published and excluding the MHC. A total of 66 SNPs at 56 loci (Online Methods 96 

describes SNP selection) were successfully genotyped in a further 3,043 cases and 5,074 97 

controls of Chinese ancestry recruited from Anhui Province. Eighteen of these SNPs (at 17 98 
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independent loci) showed association in this replication study, passing a false discovery rate 99 

(FDR) of 0.01. These included rs17603856 and rs1887428 but not rs669763, which failed 100 

quality control. We then genotyped these 18 SNPs in a European replication cohort, 101 

comprising 1,478 cases and 6,925 controls3. Data from an additional European�American 102 

GWAS (1,165 independent cases and 2,107 controls) were also included in this final 103 

analysis15 (Supplementary Table 2a). Of the 18 candidate SNPs, 11 passed a standard 104 

genome�wide level of significance (P<5×10�08) in the combined meta-analysis (11,381 105 

cases and 24,463 controls) of all three main GWAS and the three replication studies (Table 106 

1; forest plots are presented in Supplementary Fig. 1). The strongest association signal 107 

following this meta-analysis was rs1887428 (9p24). Additional statistically significant 108 

associations were found at rs34889541 (1q31.3), rs2297550 (1q32.1), rs6762714 (3q28), 109 

rs17603856 (6p23), rs597325 (6q15), rs73135369 (7q11.23), rs494003 (11q13.1) and 110 

rs1170426 (16q22.1), while two SNPs at 2p23.1 (rs1732199 and rs7579944) were replicated 111 

as being independently associated (see Online Methods and Table 1). The full set of results 112 

for the 18 candidate markers can be seen in Supplementary Table 2.   113 

In order to highlight potential causal genes at the ten newly described susceptibility loci, the 114 

associated SNPs at each locus were tested for correlation with cis�acting gene expression 115 

in ex vivo naïve CD4+ T cells and CD14 monocytes in both Asian and European population 116 

data16, and B cells, T cells and monocytes (stimulated and naïve) in Europeans only17. We 117 

calculated Regulatory Trait Concordance (RTC) scores18 (see Online Methods) to test the 118 

relationship between eQTLs driven by disease-associated alleles, and other, potentially 119 

stronger eQTLs, which we identified at each locus. Supplementary Table 3 and 120 

Supplementary Fig. 2 present results for this analysis in all cell types in circumstances where 121 

eQTLs were found in at least one cell type/population. The eQTLs were consistent across 122 

cell type and population for LBH (rs19991732), CTSW (rs494003), RNASEH2C (rs494003) 123 

and ZFP90 (rs1170426), with carriage of the SLE risk allele correlating with reduced 124 

expression (except in LPS stimulated monocytes for RNASEH2C where the eQTL results 125 
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were not significant and the RTC scores were very low). The SNP rs2297550 was found to 126 

be an eQTL for IKBKE with the SLE risk allele correlated with reduced expression in T cells, 127 

IFN stimulated monocytes, B cells and NK cells, but increased expression in monocytes.  128 

We integrated the results of the eQTL analyses with an in silico survey of murine phenotype 129 

data resulting from knockouts of genes within the associated SLE loci (Table 2)19-28. These 130 

lines of evidence point to one likely causal gene at some loci, IKBKE and JAK2 for example. 131 

In other instances, we found evidence that supports the role of multiple genes as candidates 132 

at a given locus; for example, CTSW / RNASEH2C and CDH1 / ZFP90. Locus Zoom29 plots, 133 

using the European and meta-analysed Chinese data, for all 10 loci can be seen in 134 

Supplementary Fig. 3, which facilitate a comparison of the alignment of the association 135 

signals in the two populations. The potential roles of the putative causal genes at the loci 136 

mapped in this study are described in Supplementary Table 4. 137 

The level of shared association we noted in our initial combination of the two ethnicities� 138 

GWAS was exploited further using fine mapping analyses of all published associated loci 139 

(Supplementary Table 1) and the loci we present as novel in this paper. We derived 140 

Bayesian credibility sets (C.S.) in each population for the most likely causal variants using a 141 

previously published approach30-32. We report the intersection of these sets (see methods) 142 

and Supplementary Fig. 4 displays the observed cumulative distribution for the number of 143 

SNPs in the intersection over a range of levels. Using the least stringent criterion (75% 144 

C.S.), 80% of the mapped loci had sets identifying 10 or less likely causal SNPs. Using a 145 

very rigorous criterion (99% C.S.), seven of the loci comprised less than 10 SNPs 146 

(Supplementary Table 5). STAT4 is a good example of the co�localisation of signals from 147 

each ancestry, which we show in detail in Fig. 2. In contrast we show two examples in the 148 

Figure where the association arises in one population only: IRF7 (European) and ELF1 149 

(Chinese). In each case it is evident that the likely explanation for the discrepant association 150 

signal is population-specific allele frequency differences within the credible SNP set. 151 

Supplementary Fig. 5 displays fine mapping data for the novel loci. 152 
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We downloaded epigenetic data covering each of the novel 10 associated loci identified by 153 

the meta-analysis (Table 1) from the RoadMap consortium for all blood cell types33. This was 154 

performed for all SNPs within the C.S. at each locus. Fig. 3 displays the results for SNPs at 155 

three loci, showing the level of RNA expression (RNA�seq), accessibility to DNAse, histone 156 

modification by acetylation (H3K27ac, H3K9ac) and histone modification by methylation 157 

(H3K27me3, H3K9me3). Supplementary Fig. 6 displays results for the other seven SNPs. 158 

The histone marks were selected to indicate the activation status of promoter and enhancer 159 

regions and regions of repression. This epigenetic annotation provides an interesting point of 160 

comparison with the eQTL results. Two intense histone acetylation peaks were observed 161 

around the associated SNPs rs2297550 (IKBKE) and rs1887428 (JAK2), yet only the variant 162 

in IKBKE showed a significant eQTL in the cells examined. Although we did find a significant 163 

eQTL for rs1887428 with JAK2 in monocytes, the RTC scores were low (<0.4). At SNPs, 164 

rs34889541 (CD45) and rs597325 (BACH2), there was local evidence of histone acetylation 165 

in lymphocytes, but the two SNPs were not significant eQTLs. In contrast, rs1170426 166 

(ZFP90) was a very significant eQTL, but the region around the associated SNP showed 167 

little evidence of regulatory function. However there was strong evidence of epigenetic 168 

effects at other SNPs contained in the ZFP90 C.S.  Some of the discrepancies between 169 

eQTL and epigenetic annotation likely represent the limited set of activation states (and 170 

perhaps samples sizes) of primary immune cells that have been subject to eQTL 171 

investigation. 172 

The amount of shared risk effects between the Chinese and European populations was 173 

further investigated with a co-heritability analysis using LD score regression34 (see methods) 174 

which showed a significant (P=4.0×10�03, rg=0.51) correlation between the two populations, 175 

with this correlation being stronger (P = 4.88 × 10�05, rg=0.62) after removing the MHC which 176 

emphasises its heterogeneity (Fig. 1b). These results beg the question: does the higher 177 

prevalence of SLE in Asians (compared with Europeans) have a genetic basis? We 178 

observed that on average the risk allele frequencies (RAF) in Chinese were significantly 179 
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higher than those in Europeans in the respective GWAS controls (paired t�test, P=0.02, 180 

Supplementary Fig. 7a) while the effect sizes (ORs) were not statistically different (P=0.47, 181 

Supplementary Fig. 7b). We also compared the genetic risk scores (GRS) � the joint effect 182 

of ORs and RAFs � between populations in data from 1KG (Phase III) (Fig. 4) and between 183 

the Chinese and European GWAS controls (Supplementary Fig. 8a). The GRS for SLE in 184 

East Asians (EAS) was significantly higher than that in Europeans (EUR) in the 1KG data 185 

[fold (EAS/EUR)=1.27, P=4.99×10�179; EUR=7.38 95%C.I. 7.31�7.45; EAS=9.35, 95%C.I. 186 

9.27�9.43]. There was a similar difference in score between the GWAS controls [fold 187 

(Chinese/European) = 1.28, P=1.00×10�797; European=7.42, 95%C.I. 7.40�7.44; 188 

Chinese=9.51 95%C.I. 9.46�9.55]. With more associations to be identified in future studies, 189 

especially with increased power in non-European populations including East Asians, the 190 

difference in genetic predisposition between populations revealed by GWAS might further 191 

increase. We note that an analyses of chip heritability (using all genotyped SNPs to calculate 192 

heritability explained, see methods) in both the CHN and EUR data resulted in 28% 193 

(s.e.=2.6%) explained in CHN and 27% (s.e.=1.0%) explained in EUR. 194 

Furthermore, we see a correlation between the GRS across all five major 1KG super�195 

populations and rank of the prevalence2 (see methods) of SLE (Fig. 4). A t�test on mean 196 

GRS between each pair of population data was highly significant (P<10�16) for all pairs 197 

except AMR versus SAS (P=0.67) and a linear model with rank of prevalence predicting the 198 

GRS was significant (P<10�16, r2=0.39). We have excluded the MHC from this analysis due 199 

to the difficulty of defining the best model of association in this region, due to the extensive 200 

LD and limited genotyping of SNPs and classical HLA in both populations.  201 

The increased genetic load in Chinese would help explain the continued increased 202 

prevalence in Asians following migration to Western locations2. We acknowledge that the 203 

trends we observe are a snapshot, as all available genotyped SNPs explained <30% 204 

disease heritability, and the comparison of GRS may not be a full reflection of genetic risk 205 

amongst the populations. A more detailed study of the increased prevalence of SLE in 206 
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Asians, and Africans, will require extensive comparisons of genetic and environmental data, 207 

including generation of DNA sequence data to exclude the European bias in genotyping 208 

arrays. 209 

URLs. Department of Twin Research, King�s College London, Twins�UK samples, 210 

http://www.twinsuk.ac.uk; Ingenuity Pathway Analysis, http://www.ingenuity.com/; 211 

Immunobase, http://www.immunobase.org. Systems Biology and Complex Disease 212 

Genetics, http://insidegen.com.  213 

RoadMap data (http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidatedImputed/ 214 

 215 

Data Access 216 

All 1KG imputed summary statistics are available at http://insidegen.com/insidegen�LUPUS�217 

data.html  218 

 219 

Acknowledgements  220 

PT is employed by the Biomedical Research Centre.  LC was funded by the China 221 

Scholarship Council, number 201406380127. The research was funded/supported by the 222 

National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's 223 

and St Thomas' NHS Foundation Trust and King's College London.  224 

TJV was awarded funding to carry out genotyping and analysis from George Koukis and an 225 

Arthritis Research UK Special Strategic Award and by a Wellcome Trust grant (ref. 085492) 226 

TJV was awarded funding by the MRC L002604/1 �Functional genomics of SLE: A 227 

transancestral approach�  228 

For the replication study in Europeans, samples were provided by the Swedish SLE 229 

Network. Replication genotyping was performed by the SNP&SEQ Technology Platform in 230 



9 

 

Uppsala, which is part of the Swedish National Genomics Infrastructure (NGI) hosted by 231 

Science for Life Laboratory.  232 

The controls for the European GWAS and replication were obtained from dbGaP under: 233 

accession phs000187.v1 [a study sponsored by the National Institute on Aging (grant 234 

numbers U01AG009740, RC2AG036495, and RC4AG039029) and was conducted by the 235 

University of Michigan]; a melanoma study data under accession number phs000187.v1.p1; 236 

a blood clotting study under accession number phs000304.v1.p1; a prostate cancer study 237 

data obtained from dbGaP under accession phs000207v1. 238 

The French cases for the European replication study were provided by Felix Ackermann, 239 

Zahir Amoura, Bouchra Asli, Leonardo Astudillo, Olivier Aumaître, Cristina Belizna, Nadia 240 

Belmatoug, Olivier Benveniste, Audrey Benyamine, Holly Bezanahary, Patrick Blanco, 241 

Olivier Bletry, Pierre Bourgeois, Benoit Brihaye, Patrice Cacoub, Emmanuel Chatelus, Judith 242 

Cohen�Bittan, Richard Damade, Eric Daugas, Christian De�Gennes, Jean�François 243 

Delfraissy, Aurélien Delluc, Helene Desmurs�Clavel, Pierre Duhaut, Alain Dupuy, Isabelle 244 

Durieu, Hang�Korng Ea,  Olivier Fain, Dominique Farge, Christian Funck�Brentano, Camille 245 

Frances, Lionel Galicier, Frédérique Gandjbakhch, Justine Gellen�Dautremer, Bertrand 246 

Godeau, Cécile Goujard, Catherine Grandpeix, Claire Grange, Gaëlle Guettrot, Loïc 247 

Guillevin, Eric Hachulla, Jean�Robert Harle, Julien Haroche, Pierre Hausfater, Jean�248 

Sébastien Hulot, Moez Jallouli, Jean Jouquan, Gilles Kaplanski, Homa Keshtmand, Mehdi 249 

Khellaf, Olivier Lambotte, David Launay, Philippe Lechat, Du Le Thi Huong, Véronique Le�250 

Guern, Jean�Emmanuel Kahn, Gaëlle Leroux, Hervé Levesque, Olivier Lidove, Nicolas 251 

Limal, Frédéric Lioté, Eric Liozon, Kim LY, Matthieu Mahevas, Kubéraka Mariampillai, Xavier 252 

Mariette, Alexis Mathian, Karin Mazodier, Marc Michel, Nathalie Morel, Luc Mouthon, 253 

Jacques Ninet, Eric Oksenhendler, Thomas Papo, Jean�Luc Pellegrin, Laurent Perard, 254 

Olivier Peyr, Anne�Marie Piette, Jean�Charles Piette, Vincent Poindron, Jacques Pourrat, 255 

Fabienne Roux, David Saadoun, Karim Sacre, Sabrinel Sahali, Laurent Sailler, Bernadette 256 

Saint�Marcoux, Françoise Sarrot�Reynauld, Yoland Schoindre, Jérémie Sellam, Damien 257 



10 

 

Sène, Jacques Serratrice, Pascal Seve, Jean Sibilia, Clause Simon, Amar Smail, Christelle 258 

Sordet, Jérome Stirnemann, Salim Trad, Jean�François Viallard, Elisabeth Vidal, Bertrand 259 

Wechsler, Pierre�Jean Weiller, Noël Zahr. 260 

The Chinese GWAS data was funded through Key Basic Research Program of China 261 

(2014CB541901, 2012CB722404 and 2011CB512103), the National Natural Science 262 

Foundation of China (81402590, 81371722, 81320108016 and 81171505), the Research 263 

Project of Chinese Ministry of Education (No.213018A), the Program for New Century 264 

Excellent Talents in University (NCET�12�0600) and the Natural Science Fund of Anhui 265 

province (1408085MKL27). 266 

YLL thank generous donations from Shun Tak District Min Yuen Tong of Hong Kong that 267 

partially supported the SLE GWAS in Hong Kong. YLL and WY thank the doctors who 268 

contributed SLE cases and colleagues in LKS Faculty of Medicine, University of Hong Kong 269 

who provided controls used in the GWAS. WY and YLL also thank support from Research 270 

Grant Council of the Hong Kong Government (GRF HKU783813M, HKU 784611M, 271 

17125114 and HKU 770411M). YZ thanks the Health and Medical Research Fund 272 

(Ref:12133701) from the Food and Health Bureau, Hong Kong. 273 

We thank Towfique Raj and Phil De Jager for contributing gene expression data (CD4 T 274 

cells and CD14/16 monocytes in Asian and European populations). These gene expression 275 

data are deposited in the National Center for Biotechnology Information Gene Expression 276 

Omnibus under accession no. GSE56035. We thank Ben Fairfax and Julian Knight for 277 

contributing the gene expression data on NK cells, naïve monocytes, monocytes stimulated 278 

by LPS (harvested after 2 hours and 24 hours), IFN and B cells. We thank Samuel Daffern 279 

for downloading the ChIP�seq data in contribution to the epigenetic analysis.    280 

 281 

 282 



11 

 

 283 

Author contributions  284 

YFW, ZZ and PT contributed equally to this work. 285 

TJV, XJZ, YC, YLL and WY supervised the study.   Z̢WZ, L̢LW, CY, LL, L̢LY, FL, Y̢286 

BH and SY performed sample selection and data management, undertook recruitment, 287 

collected phenotype data for the Anhui Chinese data. LR, BGF, BEV, NC�C and PMG 288 

performed sample selection and data management, undertook recruitment, collected 289 

phenotype data for the European data. ALR worked on both the Chinese and European 290 

replication studies� genotyping. DLM, YJS, YZ and YFW carried out statistical analysis of the 291 

GWAS data. DLM and PT carried out the 1000 genomes imputation in the European GWAS. 292 

RC and TW carried out the 1000 genomes imputation in the Anhui and Hong Kong Chinese 293 

GWAS. DLM, PT, XBZ, YFW and YZ carried out statistical analysis for the meta�analysis of 294 

the 1000 genomes imputed data. DLM, YJS and YZ designed the replication studies� chips. 295 

BGF and REV contributed data to the European replication cohort. DM and JB performed 296 

quality control on the European data for the replication study. DM analyzed the European 297 

replication data. DM, YJS and YZ analyzed the Anhui replication data. YFW and DM 298 

designed and performed genetic risk score comparison between the populations. YFW 299 

performed the LD score regression analysis. DM and LY carried out the eQTL analysis. DLM 300 

and DSCG carried out the epigenetic analysis.  DLM, TJV, DSCG, XJZ, YC YJS, and WY 301 

wrote the manuscript.  All authors have read and contributed to the manuscript.     302 

Competing financial interests 303 

The authors declare no competing financial interests. 304 

 305 

  306 



12 

 

References 307 

1. Lawrence, J.S., Martins, C.L. & Drake, G.L. A Family Survey of Lupus-Erythematosus .1. 308 

Heritability. Journal of Rheumatology 14, 913-921 (1987). 309 

2. Danchenko, N., Satia, J. & Anthony, M. Epidemiology of systemic lupus erythematosus: a 310 

comparison of worldwide disease burden. Lupus 15, 308-318 (2006). 311 

3. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and 312 

adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nature 313 

Genetics 47, 1457-1464 (2015). 314 

4. Han, J.W. et al. Genome-wide association study in a Chinese Han population identifies nine 315 

new susceptibility loci for systemic lupus erythematosus. Nature Genetics 41, 1234-1237 316 

(2009). 317 

5. Yang, W.L. et al. Genome-Wide Association Study in Asian Populations Identifies Variants in 318 

ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus. Plos Genetics 6, e1000841 319 

(2010). 320 

6. Sheng, Y.J. et al. Follow-up study identifies two novel susceptibility loci PRKCB and 8p11.21 321 

for systemic lupus erythematosus. Rheumatology 50, 682-688 (2011). 322 

7. Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, 323 

CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. 324 

American Journal of Human Genetics 92, 41-51 (2013). 325 

8. Li, Y. et al. Association analyses identifying two common susceptibility loci shared by 326 

psoriasis and systemic lupus erythematosus in the Chinese Han population. J Med Genet 50, 327 

812-8 (2013). 328 

9. Sheng, Y.J. et al. Association analyses confirm five susceptibility loci for systemic lupus 329 

erythematosus in the Han Chinese population. Arthritis Res Ther 17, 85 (2015). 330 

10. Yang, J. et al. ELF1 is associated with systemic lupus erythematosus in Asian populations. 331 

Human Molecular Genetics 20, 601-607 (2011). 332 

11. Fernando, M.M.A. et al. Transancestral mapping of the MHC region in systemic lupus 333 

erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-334 

G. Annals of the Rheumatic Diseases 71, 777-784 (2012). 335 

12. Manku, H. et al. Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4. Plos 336 

Genetics 9, e1003554 (2013). 337 

13. Adrianto, I. et al. Association of a functional variant downstream of TNFAIP3 with systemic 338 

lupus erythematosus. Nature Genetics 43, 253-258 (2011). 339 

14. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the 340 

genetic architecture of type 2 diabetes susceptibility. Nature Genetics 46, 234-244 (2014). 341 

15. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-342 

ITGAX. N Engl J Med 358, 900-909 (2008). 343 

16. Raj, T. et al. Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles in 344 

Leukocytes. Science 344, 519-523 (2014). 345 

17. Fairfax, B.P. et al. Genetics of gene expression in primary immune cells identifies cell type-346 

specific master regulators and roles of HLA alleles. Nature Genetics 44, 502-510 (2012). 347 

18. Nica, A.C. et al. Candidate Causal Regulatory Effects by Integration of Expression QTLs with 348 

Complex Trait Genetic Associations. Plos Genetics 6, e1000895 (2010). 349 

19. Jury, E.C., Kabouridis, P.S., Flores-Borja, F., Mageed, R.A. & Isenberg, D.A. Altered lipid raft-350 

associated signaling and ganglioside expression in T lymphocytes from patients with 351 

systemic lupus erythematosus. Journal of Clinical Investigation 113, 1176-1187 (2004). 352 

20. Wang, C. et al. Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility. Genes and 353 

Immunity 14, 217-222 (2013). 354 



13 

 

21. Kim, K. et al. High-density genotyping of immune loci in Koreans and Europeans identifies 355 

eight new rheumatoid arthritis risk loci. Annals of the Rheumatic Diseases 74, 356 

10.1136/annrheumdis-2013-204749 (2015). 357 

22. Plagnol, V. et al. Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 358 

Diabetes Cases. Plos Genetics 7, e1002216 (2011). 359 

23. Medici, M. et al. Identification of Novel Genetic Loci Associated with Thyroid Peroxidase 360 

Antibodies and Clinical Thyroid Disease. Plos Genetics 10, e1004123 (2014). 361 

24. Tantin, D., Tussie-Luna, M.I., Roy, A.L. & Sharp, P.A. Regulation of immunoglobulin promoter 362 

activity by TFII-I class transcription factors. Journal of Biological Chemistry 279, 5460-5469 363 

(2004). 364 

25. Lu, L.D. et al. Depletion of Autoreactive Plasma Cells and Treatment of Lupus Nephritis in 365 

Mice Using CEP-33779, a Novel, Orally Active, Selective Inhibitor of JAK2. Journal of 366 

Immunology 187, 3840-3853 (2011). 367 

26. Crow, Y.J. et al. Characterization of Human Disease Phenotypes Associated with Mutations in 368 

TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. American Journal of 369 

Medical Genetics Part A 167, 296-312 (2015). 370 

27. Gunther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic 371 

autoimmunity. Journal of Clinical Investigation 125, 413-424 (2015). 372 

28. Huang, C. et al. Cutting Edge: a novel, human-specific interacting protein couples FOXP3 to a 373 

chromatin-remodeling complex that contains KAP1/TRIM28. J Immunol 190, 4470-3 (2013). 374 

29. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. 375 

Bioinformatics 26, 2336-2337 (2010). 376 

30. Beecham, A.H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants 377 

for multiple sclerosis. Nature Genetics 45, 1353-1360 (2013). 378 

31. Maller, J.B. et al. Bayesian refinement of association signals for 14 loci in 3 common 379 

diseases. Nature Genetics 44, 1294-1301 (2012). 380 

32. Gaulton, K.J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms 381 

at type 2 diabetes susceptibility loci. Nat Genet 47, 1415-1425 (2015). 382 

33. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nature 383 

Biotechnology 28, 1045-1048 (2010). 384 

34. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. 385 

Nature Genetics 47, 1236-1241 (2015). 386 

 387 

  388 



14 

 

Figure Legends 389 

Figure 1 (a) Manhattan plot of the European and Chinese (meta-analysis of two Chinese 390 

GWAS) GWASs. The �log10 P-values for Europeans are shown in light blue with the log10 P–391 

values for the Chinese in pink. The 52 loci with published evidence of association are 392 

highlighted in blue and red while the 10 novel loci indented as associated from this study are 393 

highlighted in black. (b) �Log10 P-values for meta-analysis (Europeans combined with 394 

Chinese GWAS) in grey with the log10 P-values for a test of heterogeneity between the 395 

European and Chinese GWAS in brown. The 52 loci with published evidence of association 396 

are highlighted in black (meta P-values) and dark brown (heterogeneity test) while the 10 397 

novel loci indented as associated from this study are highlighted in black.  398 

 399 

Figure 2 Fine mapping examples for STAT4, IRF7 and ELF1. The upper plots are 400 

LocusZoom plots showing association significance [�log10(P-value)] and local LD (colour 401 

coded). Circular points represent SNPs contained within the credibility sets and square 402 

points represent SNPs not contained in the sets. The lower plots display the minor allele 403 

frequencies (MAF) for all the SNPs in the intersection of the European (EUR) and Chinese 404 

(CHN) credibility sets. The MAF is plotted in red. The SNPs with highest posterior probability 405 

within the intersection of C.I.s are highlighted in BLUE (highest posterior probability in the 406 

EUR data), RED (highest posterior probability in the CHN data) and BLACK (highest 407 

posterior probability in the CHN-EUR Meta data). The C.S. coverage (99% for STAT4, 90% 408 

for IRF7 and ELF1) was chosen as the maximum coverage that included a maximum of 30 409 

SNPs.  410 

Figure 3 3D enrichment plots depict epigenetic modifications +/�50bp overlapping all SNPs 411 

in the Credibility Sets for the 11 novel associated SNPs.  The SNPs are shown as individual 412 

tracks on the x-axis with the SNP used in the replication study marked (*) and the SNP that 413 

shows the best evidence for co-localisation with the most prominent epigenetic mark (#).  414 
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Other SNP identities are listed in Supplementary Table 6.  The z�axis represents log10 P-415 

value against the null hypothesis that peak intensity arises from the control distribution. The 416 

z-axis is truncated at a lower level of (P<10�04). Each novel associated locus has a separate 417 

panel with results for RNA expression (RNA-seq), accessibility to DNAse, histone 418 

modification by acetylation (H3K27ac, H3K9ac) and histone modification by methylation 419 

(H3K27me3, H3K9me3) over 27 immune cells. The data from the blood cell types are 420 

consistently ordered on the y-axis according to the annotation to the right of the figure: 421 

categories 1�9 innate response immune cells; categories 10�24 adaptive response immune 422 

cell types (categories 10�11 B-cells; categories 12�24 T-cells) and then categories 25�27 423 

cell lines.  424 

 425 

Figure 4 Box plots of genetic risk score (GRS) for across the five major population groups. 426 

These are standard box plots with medians, interquartile ranges and whiskers at 1.5 of the 427 

interquartile range (Tukey box plots) displayed. (EUR European N=498, AMR Amerindian 428 

N=347, SAS South Asian N=487, EAS East Asian N=503, AFR African N=657) in the 1,000 429 

Genomes phase III release.  The dotted line represented the increase in prevalence with the 430 

rank order presented (R1 representing the lowest prevalence and R4 the highest). 431 

 432 
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Table 1: Summary of statistical associations for new loci 

SNP Chr Position 
Risk 

allele
a
 

Chinese MAF
b
 European MAF

b
 

Chinese 
4,702 cases 

8,472 controls 

European 
6,679 cases 

15,991 controls 

Meta all 
11,381 cases 

24,463 controls 
Gene

d
 

Association 
with other 

Autoimmune 
diseases

f
 

    
Case Control Case Control 

OR 
(95% CI)

c
 

P 
OR 

(95% CI) 
P 

OR 
(95% CI) 

P 
  

rs34889541 1q31.3 198,594,769 G 0.126 0.14 0.058 0.07 
0.78 

(0.72 � 0.84) 
2.96E�10 

0.86 
(0.79 � 0.94) 

5.34E�04 
0.81 

(0.76 � 0.86) 
2.44E�12 

PTPRC 
(CD45) 

MS, RA, T1D 

rs2297550 1q32.1 206,643,772 G 0.577 0.546 0.14 0.12 
1.14 

(1.08 � 1.20) 
1.73E�07 

1.18 
(1.09 � 1.27) 

1.43E�05 
1.16 

(1.11 � 1.21) 
1.31E�11 IKBKE 

 

rs7579944 2p23.1 30,445,026 C 0.59 0.641 0.338 0.366 
0.87 

(0.82 � 0.92) 
5.52E�06 

0.92 
(0.88 � 0.96) 

3.96E�05 
0.90 

(0.87 � 0.93) 
1.41E�09 LBH

e
 

RA, AA, IBD, 
NAR, PSC, 

SJO, SSC, VIT 

rs17321999 2p23.1 30,479,857 C 0.16 0.164 0.161 0.191 
0.82 

(0.77 � 0.88) 
9.55E�09 

0.84 
(0.79 � 0.89) 

2.26E�09 
0.83 

(0.79 � 0.87) 
2.22E�16 LBH

e
 

RA, AA, IBD, 
NAR, PSC, 

SJO, SSC, VIT 

rs6762714 3q28 188,470,238 T 0.848 0.825 0.421 0.392 
1.20 

(1.12 � 1.29) 
5.56E�07 

1.14 
(1.09 � 1.19) 

7.97E�10 
1.16 

(1.12 � 1.20) 
4.00E�15 

LPP, 
TPRG1–

AS1 
ATD, CEL VIT 

rs17603856 6p23 16,630,898 T 0.221 0.222 0.325 0.355 
0.86 

(0.80 � 0.92) 
1.61E�05 

0.89 
(0.85 � 0.93) 

3.34E�08 
0.88 

(0.85 � 0.91) 
3.27E�12 ATXN1 

 

rs597325 6q15 91,002,494 G 0.485 0.52 0.357 0.385 
0.84 

(0.80 � 0.89) 
1.05E�10 

0.92 
(0.88 � 0.96) 

2.65E�04 
0.89 

(0.86 � 0.92) 
4.03E�12 BACH2 

AS, ATD, CEL, 
CRO, MS, T1D 
IBD, PSC, VIT 

rs73135369 7q11.23 73,940,978 C 0.107 0.076 0.028 0.022 
1.38 

(1.26 � 1.51) 
7.33E�13 

1.20 
(1.05 � 1.38) 

9.00E�03 
1.32 

(1.23 � 1.42) 
8.77E�14 

GTF2IRD1–
GTF2I  

rs1887428 9p24 4,984,530 G 0.372 0.346 0.398 0.373 
1.24 

(1.17 � 1.31) 
4.49E�14 

1.11 
(1.06 � 1.16) 

1.25E�06 
1.16 

(1.12 � 1.20) 
2.19E�17 JAK2 

CRO, UC IBD, 
PSC, VIT 

rs494003 11q13.1 65,542,298 A 0.116 0.117 0.213 0.19 
1.16 

(1.06 � 1.27) 
8.38E�04 

1.13 
(1.07 � 1.19) 

1.68E�06 
1.14 

(1.09 � 1.19) 
5.81E�09 RNASEH2C CRO, IBD 

rs1170426 16q22.1 68,603,798 C 0.198 0.176 0.252 0.235 
1.20 

(1.12 � 1.28) 
4.36E�08 

1.06 
(1.02 � 1.10) 

3.59E�03 
1.12 

(1.08 � 1.17) 
2.24E�08 ZFP90 

MS, UC IBD, 
PSC, VIT 

�Chinese� comprises the two Chinese GWAS (1,659 cases and 3,398 controls) and the Chinese Replication (3,043 cases and 5,074 controls). �European� comprises the European GWAS (4,036 cases and 6,959 controls), the 
additional European GWAS (1,165 cases and 2,107 controls) and the European replication study (1,478 cases and 6,925 controls) 

a
 The risk allele refers to the effect in the overall meta-analysis 

b
 MAF refers to the frequency of allele that is minor in Europeans. 

c
 The Odds Ratio (OR) is with respect to the minor allele.  

d
 For the rationale for candidate gene selection at the associated loci see Table 2 

e
 C6orf1 is also known as LBH, but we chose LBH as our gene because there are two separate signals in LBH. rs7579944 and rs17321999 were found to be independently associated with SLE (see Online Methods): 

rs17321999 was significant (Chinese P = 2.62 x 10
�11

; European P = 6.14 x 10
�6

; Meta P = 3.33 x 10
�15

) when using rs7579944 as a covariate in logistic regression, and rs7579944 was significant (Chinese P = 1.38 x10
�8

; 
European P = 4.49 x 10

�6
; Meta P = 4.16 x 10

�13
) at meta-analysis when using rs17321999 as a covariate in logistic regression. The LD between these two SNPs was very weak in all studies (The r

2
 was as follows in each data 

set: Anhui GWAS = 0.039; Hong Kong GWAS = 0.024; Anhui Replication study =0.030; European GWAS = 0.005; Hom et al GWAS = 0.007; European replication study =0.005) 
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f
 Association for the gene(s) implicated by each SNP in other autoimmune diseases (excluding SLE) in Immunobase (www.immunobase.org) � Type 1 diabetes (T1D), Celiac disease (CEL), Multiple Sclerosis (MS), Crohn�s 
Disease (CRO), Primary Billiary Cirrhosis (PBC), Psoriasis (PSO), Rheumatoid Arthritis (RA), Ulcerative Colitis (UC), Ankylosing Spondylitis (AS), Autoimmune Thyroid Disease (ATD), Juvenile Idiopathic Arthritis (JIA), Alopecia 
Areata (AA), Inflammatory Bowel Disease (IBD), Narcolepsy (NAR), Primary Sclerosing Cholangitis (PSC), Sjögren's Syndrome (SJO), Systemic Scleroderma (SSc), Vitiligo (VIT). 
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Table 2: Candidate Genes at SLE Associated Loci in Meta�Analysis 

 Associated 

SNP 
Chr Genes within +/�200kb of SNP 

Genes within same 

LD block as SNP
a
 

Immune 

phenotype in 

murine model
b
 

Cis eQTLs with 

SNP 

Likely Causal Gene at Locus 

(Reference) 

rs34889541 1 ATP6V1G3, PTPRC, MIR181A1HG PTPRC (CD45) PTPRC (CD45)  CD45
19 

rs2297550
 

1 
SRGAP2, SRGAP2D, IKBKE, RASSF5, 
EIF2D,DYRK3 

IKBKE IKBKE, RASSF5 IKBKE IKBKE
20 

rs17321999
 

2 YPEL5, LBH, LOC285043, LCLAT1 LBH  LBH LBH
21 

rs6762714
 

3 LPP, TPRG1–AS1 LPP    

rs17603856 6 ATXN1 ATXN1    

rs597325
 

6 BACH2 BACH2 BACH2  BACH2
22,23

  

rs73135369
 

7 CLIP2, GTF2IRD1, GTF2I, LOC101926943 GTF2IRD1   GTF2IRD1/GTF2I
24 

rs1887428 9 RCL1, JAK2, INSL6 JAK2 JAK2  JAK2
25 

rs494003
 

11 

EHBP1L1, KCNK7, MAP3K11, PCNXL3, 
SIPA1, RELA, KAT5, RNASEH2C, AP5B1, 
OVOL1, OVOL1–AS1, SNX32, CFL1, 
MUS81, EFEMP2, CTSW, FIBP, CCDC85B, 
FOSL1, 
C11orf68, DRAP1, TSGA10IP, SART1 

AP5B1, OVOL1, 
OVOL1–AS1 

CTSW, MUS81,
RELA, SIPA1 

CTSW, FIBP, 
MUS81, 
RNASEH2C 

RNASEH2C
26,27 

rs1170426
 

16 SMPD3, ZFP90, CDH3, CDH1 ZFP90, CDH3 CDH1 ZFP90 ZFP90 (FIK)
28

 

 

a 
The LD block is defined as SNPs showing a correlation (r

2
) of 0.75 with the associated SNP  

b
 The immune phenotype designation is taken from http://www.informatics.jax.org/phenotypes.shtml of genes within +/�200kb of associated SNP 
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 467 

ONLINE METHODS 468 

Study design in brief  469 

We combined summary genome wide association data from two Chinese GWAS4,5 [Anhui 470 

province, mainland China: 1,047 cases (63 males) and 1,205 Controls (673 males), ȜGC = 471 

1.05; Hong Kong: 612 cases (50 males) and 2,193 Controls (919 males),ȜGC = 1.04] and a 472 

European GWAS [4,036 cases (365 males) and 6,959 Controls (2,785 males), ȜGC = 1.16 473 

with Ȝ1,000 = 1.02], after imputing all three studies to the 1000 Genome (1KG) data density, 474 

and performed a meta�analysis. As the European data comprise 70% of both total cases 475 

and total controls, and was therefore the driving force in this meta�analysis, we selected 476 

SNPs for replication in a further set of Chinese samples first. We identified a subset of SNPs 477 

in the Chinese replication that passed an FDR of 1% to take forward for replication in 478 

European samples. We then performed replication using a second European GWAS15 479 

independent of our main European GWAS and also de novo genotyping in a new data 480 

cohort of European ancestry. 481 

 482 

Imputation  483 

We pre-phased each of the three studies separately using SHAPEIT35. The studies were 484 

then separately imputed  (IMPUTE36) with 1KG reference data (Phase-I integrated set March 485 

2012 build 37). The three datasets were aligned and meta-analyzed using R37 by the King�s 486 

College London group and also independently by the groups at Anhui and Hong Kong using 487 

METAL38. SNPs with imputation INFO scores < 0.7 in any of the three studies were removed 488 

from further analysis.  The number of SNPs available pre- and post-QC, per chromosome 489 

and per associated locus are displayed in Supplementary Tables 7a and 7f respectively. A 490 
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summary of INFO scores and imputation cross validation are in Supplementary Tables 7b�e 491 

for each chromosome and Supplementary Tables 7g�j for each associated locus. 492 

See supplementary note 3 for a discussion of the limitation of using imputed data.  493 

Statistical analysis 494 

Association testing: Following Imputation, each GWAS dataset was analysed for 495 

association (SNPTEST36), fitting an additive model. We used the inverse variance method 496 

for meta�analysis, combining data from the three studies for SNPs with an imputation INFO 497 

score > 0.7 in all three studies. 498 

Testing for heterogeneity: We tested for heterogeneity between the associations signals in 499 

the Chinese and European data using Cochran�s Q statistic (1 degree of freedom in this 500 

case). The P-values on the �log10 scale are plotted in Fig. 1b. QQ-plots (one per 501 

chromosome) for the heterogeneity P-values can be seen in Supplementary Fig. 9a and 502 

Bland-Altman plots for differences in genetic effect (log odds-ratio) estimates are in 503 

Supplementary Fig. 9b. 504 

Assessment of shared association between ancestries: To assess the extent to which 505 

genetic association with SLE was shared between the Chinese and European populations, 506 

we compared association results in the European GWAS3 with a meta�analysis of both 507 

Chinese GWAS, for SNPs published as associated in Europeans3 and/or Chinese studies4,6-
508 

9. Association signals were declared as �shared� between the Chinese and Europeans if the 509 

SNP passed any one of the following four tests: 510 

1: the locus had a published association in both Chinese and European studies at a 511 

genome�wide level of significance (P < 5 × 10�08); 512 

2: the SNP was only published in Europeans but the association P-value in the Chinese 513 

meta�analysis was significant (FDR < 0.01 across all SNPs in this group) and the direction 514 

of effect in all three GWAS was the same.  515 
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3: the SNP was only published in a Chinese study but the association P-value in the 516 

European GWAS was significant (FDR < 0.01) and the direction of effect in all three GWAS 517 

was the same. 518 

4: If the SNP failed either of tests 2 or 3, we performed a gene�based test (applying the 519 

software KGG39-41) on genes within +/�1Mb of the published SNP. The locus was deemed 520 

shared if the gene-based P-value was significant at the 0.01 level after adjusting for multiple 521 

testing across all genes tested.  522 

We also performed a meta-analysis (European GWAS + both Chinese GWASs) of all loci 523 

published in either Chinese or European studies (each published SNP +/�1Mb) and 524 

recorded the most associated SNP. For loci published in Europeans, we declared the loci 525 

shared if the P-value (adjusted for multiple testing over all SNPs tested within the 2Mb 526 

region) in the Chinese data passed an FDR at 0.01 across all the loci published only in 527 

Europeans. We performed the reverse test for all loci published only in Chinese. While this 528 

did not identify any further shared loci (Supplementary Table 1b), two loci showed 529 

suggestive evidence (P < 0.05 after multiple testing adjustment within loci but not after 530 

adjusting across loci.) 531 

Consistency of association between ancestries: We tested the hypothesis that the 532 

genome�wide association signals were consistent between the two populations. Post 1KG 533 

imputed association data were used for SNPs with INFO > 0.7. These genome wide 534 

association signals were separated into 1Mb regions (moving 1MB windows across the 535 

genome, 2,698 in total). We removed the extended MHC with a conservative buffer zone 536 

(Chr�6, from 20Mb to 40Mb), leaving 2,678 regions. We also removed regions that had 537 

excessively (more than 2 standard deviations from the average) low (N < 1000) or high (N > 538 

3000) density of SNPs. This removed only 10% of the regions, leaving 2,338 regions. The 539 

lowest P-value within each window was taken as the strength of association for that 540 

particular window. Each P-value within each region was adjusted for multiple testing using a 541 
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Bonferroni adjustment, to avoid bias in ranking agreement owing to the lowest P�value being 542 

correlated with the number of statistical tests. The 1Mb regions within each population�s data 543 

were then ranked according to the P-value (lowest P-value having rank 1). We tested 544 

agreement in ranking using Kendall�s Tau statistic. Supplementary Fig. 7c�i shows a heat 545 

map of the ranks [red for highest rank (lowest P-value) and blue for lowest rank (highest P-546 

value)] for all 2,338 regions. The order in this heat map was determined by the sum of the 547 

ranks (the region at the top of the figure has the smallest rank sum across the two 548 

populations). European ranks were plotted next to the Chinese ranks. For comparison, a 549 

simulated ranked dataset is shown alongside; we permuted the numbers 1 to 2,338 in two 550 

separate datasets and produced a heat map ordered by the sum of the ranks. 551 

Supplementary Fig. 7c�ii shows the same data but only for the top 250 regions. 552 

Supplementary Fig. 7c�iii shows the top 50 regions. 553 

Testing for independent effects within loci: We tested for independent effects of the two 554 

SNPs (rs17321999 and rs7579944) within the 2p23.1 locus by fitting a multiple regression 555 

model with both SNPs as explanatory variables (results for each SNP in this analysis are 556 

conditional on the other SNP as a covariate). We checked linkage disequilibrium between 557 

the two SNPs in all datasets. The conditional results were combined in meta-analysis in the 558 

same way as the single�marker analysis. 559 

Selection of SNPs for replication study: SNPs were chosen for replication in the Chinese 560 

samples using a number of criteria. We only chose SNPs that were not within a 1Mb window 561 

of loci that had previously been published as associated with SLE. We selected SNPs that 562 

had P�value significance levels at meta�analysis < 10�04. Three SNPs in loci not previously 563 

reported as associated with SLE had genome wide level of significance (P < 5 × 10�08) after 564 

meta�analysis. SNPs spanning a 1Mb window were considered as one region and we 565 

selected only independent SNPs within this region: using LD as a measure of independence. 566 

We performed a gene�based test on the meta�analyzed data, using only SNPs that passed 567 

INFO > 0.9, applying the software KGG39-41. One SNP from each of the loci that passed a 568 
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gene based test at the level of P < 10�05 were chosen, some of which were already selected 569 

as having P < 10�04 in the meta�analysis as single markers. In total 105 SNPs were selected 570 

for replication in the Chinese replication cohort. From these 66 passed QC and 18 SNPs, 571 

that passed a FDR < 1%, were taken forward to a further replication in the European 572 

replication. 573 

Genotyping of replication data 574 

Genotyping of 130 SNPs was performed in 3,614 cases and 5,924 controls forming the 575 

Chinese replication set, using the Sequenom platform. This set of 130 SNPs included 105 576 

SNPs in loci not previously reported as associated with SLE and 25 SNPs that were in loci 577 

that had previously been published as associated with SLE. The 105 potentially novel SNPs 578 

included, in some cases, multiple SNPs in the same loci where we had some evidence of 579 

independence. Several quality control (QC) steps were performed. SNPs with >10% missing 580 

data were removed (25 SNPs) followed by subjects with >5% missing data being removed.  581 

Two SNPs were monomorphic. Of the remaining 103 SNPs, 77 were in regions of the 582 

genome with potentially novel SLE associations. Thirteen SNPs were removed after 583 

checking the genotyping allele intensity plots closely for clustering quality and testing for 584 

Hardy Weinberg Equilibrium (HWE). SNPs were removed if HWE P < 1.00 × 10�04.  Post-QC 585 

the Chinese replication consisted of 3,043 cases, 5,074 controls with genotyping on 64 586 

SNPs. The European replication data comprised 1,478 cases and 6,925 controls genotyped 587 

for 18 SNPs that passed a False Discovery Rate of 1% in the Chinese replication study: the 588 

cases were of European ancestry and were a subset of those used in the replication study in 589 

the European GWAS3, on which this current study performed new genotyping on these 18 590 

SNPs, and the controls were the same as used in that study (these samples were checked 591 

for European ancestry using a principal component analysis spiked with HapMap samples, 592 

see original paper). One of the 18 SNPs typed in the European replication cohort for this 593 

study (rs2297550) failed genotyping and the remaining 17 SNPs passed QC (< 3% missing 594 
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data, HWE P > 1.00 × 10�04). An additional European GWAS was also used for replication, 595 

comprising 1,165 cases and 2,107 controls15. 596 

Gene expression data 597 

Gene expression data were obtained from two sources: firstly, we obtained data from Fairfax 598 

et al17 and unpublished data from Fairfax and Knight for NK cells, naïve monocytes, 599 

monocytes stimulated by LPS (harvested after 2 hours and 24 hours), monocytes stimulated 600 

by IFN and B cells. The CD4 (CD4 T cells) and CD14 (CD14/16 monocytes) data were 601 

obtained from a previous study of gene expression in immune related cells16. An adjustment 602 

was made for multiple testing using a false discovery rate at 0.01. To test whether observed 603 

associations between SNPs and expression levels of cis-acting genes were due to chance, 604 

we calculated the RTC score18.  605 

Fine mapping Bayesian credibility sets. 606 

For each of the associated loci in Supplementary Table 1 and Table 1, we calculated a 607 

Bayes factor for each SNP within the 2Mb window. We used the approximate Bayes factor of 608 

Wakefield32. We then calculated the posterior probability that each SNP was driving the 609 

association, using the Bayes factors, and created credibility sets as recently described32. We 610 

created credibility sets using the European data and the Chinese data separately and 611 

overlaid these sets (presented in Supplementary Fig 5). We focused on the intersection of 612 

these two sets and present the SNPs with highest posterior probability within this 613 

intersection along with allele frequencies. We focus on the intersection of the two 614 

populations� sets, as credibility sets calculated from the overall meta�analysis are driven by 615 

the European data. This would also be true if we were to use Bayesian updating (where the 616 

posterior probabilities from one population were used as priors in the other population). The 617 

intersection of the sets gives a subset of each populations C.S. that more likely contain the 618 

true casual SNP. 619 

RoadMap Data 620 
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We downloaded the epigenetic data for SNPs within the credibility intervals (as defined in 621 

Supplementary Fig. 5) around each meta-analysis SNP (Table 1) from the RoadMap 622 

consortium for all blood cell types. We chose DNse, RNA-Seq, H3K27ac (distinguishing 623 

active enhancers/promoters), H3K27me3 (repressive domains), H3K9ac (promoters), 624 

H3K9me3 (constitutive heterochromatin). The files downloaded contained the consolidated 625 

imputed epigenetic data based on the P-value signals from each of the individual epigenetic 626 

marks in each of the cell types within whole blood.  We used the UCSC genome browser 627 

(hg19) to subset each epigenetic track for regions containing each credibility SNP and then 628 

exported the signal data via Galaxy42. In selecting chromatin enrichments at each mark for 629 

each SNP within the credibility set, we ensured that no SNP was less than 10 bp away from 630 

the edge of the 25 base pair epigenetic interval containing it.  For SNPs closer to the edge of 631 

the chromatin interval, we averaged the enrichment from two adjacent intervals. The �3D 632 

enrichment diagrams� were plotted for each chromatin mark in each cell type for each SNP 633 

within the credibility set (Fig. 3 and Supplementary Fig. 6).  Fig. 3 and Supplementary Fig. 6 634 

highlight SNPs contained within peaks of enrichment (log10 P < 1 x 10�04) with tick marks, 635 

these SNPs are listed in Supplementary Table 6. 636 

Genetic structure of SLE in European and Asian population 637 

The genetic risk score was calculated according to the method described by Hughes et al.43, 638 

taking the number of risk alleles (i.e., 0, 1 or 2) for a given SNP and multiplying it by the 639 

natural log of its odds ratio (OR). The cumulative risk score in each subject was calculated 640 

by summing the risk scores from the loci in Supplementary Table 1, excluding the MHC, plus 641 

the 11 novel SNPs reported in this paper, which robustly associated with SLE and passed 642 

quality control in each population: 643 

݁ݎ݋ܿݏ	݇ݏ݅ݎ	ܿ݅ݐ݁݊݁݃	݁ݒ݅ݐ݈ܽݑ݉ݑܥ ൌ ෍ ݈݊	ሺܱܴ௜ሻܩ௜௠
௜ୀଵ  
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Where m represents number of SLE risk loci; ܱܴ௜ indicates the OR of risk SNPi and ܩ is the 644 

number of risk alleles at a given SNP. Cumulative risk scores were calculated for 498 645 

founders in EUR, 503 founders in EAS, 487 in SAS, 347 in AMR and 657 in AFR from the 646 

1KG project phase III. We tested for differences in GRS using a t-test. A Q-Q plot for each 647 

data satisfied assumptions of normality and given the large sample sizes the central limit 648 

theorem will satisfy normality for the distribution of sample means. As there was evidence of 649 

differences in variances of the GRS between some pairs of populations (EUR vs AMR, P = 650 

9.97 x 10�05; AMR vs SAS, P = 5.37 x 10�05 SAS vs EAS, P = 4.50 x 10�03), we used a Welch 651 

2-sample t-test which does not assume equal variances. The variances in each group were 652 

as follows (Chinese controls = 0.75, European Controls = 0.69; 1KG EAS = 0.86, 1KG EUR 653 

= 0.67, 1KG SAS = 0.66, 1KG AMR = 0.99, 1KG AFR = 0.77). We used the SNPs from 654 

Supplementary Table 1a to calculate the GRS for each population. We used the estimated 655 

OR from the EUR GWAS for the calculation of the GRS in Europeans (EUR and GWAS 656 

controls) and the OR from the Chinese GWAS for the calculation of the GRS in the EAS and 657 

Chinese GWAS controls. The OR from the EUR-Chinese meta-analysis was used in 658 

calculating the GRS in the AMR, SAS and AFR populations. 659 

See supplementary note 1 for an assessment of the robustness of our approach.  660 

See supplementary note 2 for details on SLE prevalence.  661 

Heritability explained  662 

We calculated the heritability explained by all genotyped SNPs in the CHN and EUR 663 

populations using GCTA44. We assumed that the Chinese have approximately 3 fold 664 

increase in prevalence over the Europeans, so we set the prevalence at 0.0003 in EUR and 665 

0.001 in CHN. We used a cut off for relatedness at 0.05 and we used sex as a covariate. 666 

The results were h2=28.4% (SE = 2.6%) in CHN and h2=27.0% (SE = 1.0%) in EUR for 667 

autosomal SNPs. We found that the results were robust to choice of relatedness for the 668 

autosomal SNPs [a cut-off of 0.125 resulted in h2=28.4% (SE = 2.6%) in CHN and h2=27% 669 
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(SE = 1.0%) in EUR] while not so for the X chromosome [a cut-off of 0.125 resulted in 670 

h2=1.2% (SE = 0.5%) in CHN and h2=1.1% (SE = 0.2%) in EUR] where a cut-off for 671 

relatedness at 0.05 resulted in h< 0.015 in both populations.   672 

To compare both populations using the same SNP density we re-ran the analysis on the 673 

overlap of genotyped SNPs (267,005 SNPs with MAF > 1% in CHN and 264,833 with MAF > 674 

1% in EUR) and find that the heritability explained was higher in the CHN data: h2=30.2% 675 

(SE = 2.6%) in CHN and h2=22.7% (SE = 0.9%) in EUR.  676 

Genetic correlation between European and Chinese SLE GWAS 677 

To estimate genetic correlation (rg) we applied LD score regression34 to the summary 678 

association data in the European GWAS and the meta-analysis of the Chinese data (the 679 

input data is all GWAS summary statistics not just the SLE risk loci discussed in this paper). 680 

While this methodology is designed to compare similarity of genetic risk across diseases in 681 

the same population it serves here only to illustrate similarity across populations for the 682 

same disease and to highlight the heterogeneity at the MHC. We performed this analysis 683 

using both Asian (rg =0.49, P = 3.00 x 10�03) and European (rg=0.51, P = 4.00 x 10�03) 684 

reference LD information. This analysis was performed using summary data on all the SLE 685 

risk loci presented in this paper and a further analysis after removing the MHC [Asian (rg 686 

=0.63, P = 6.92 x 10�07) and European (rg =0.62, P = 4.88 x 10�05)]. The increase in rg post 687 

removal of the MHC illustrates the major heterogeneity at this locus.   688 
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