24 research outputs found

    Measuring Complex Morphological Traits with 3D Photogrammetry: A Case Study with Deer Antlers

    Get PDF
    The increasing availability of 3D-imaging technology provides new opportunities for measuring morphology. Photogrammetry enables easy 3D-data acquisition compared to conventional methods and here we assess its accuracy for measuring the size of deer antlers, a complex morphological structure. Using a proprietary photogrammetry software, we generated 3D images of antlers for 92 individuals from 29 species of cervids that vary widely in antler size and shape and used these to measure antler volume. By repeating the process, we found that the relative error averaged 8.5% of object size. Errors in converting arbitrary voxel units into real volumetric units accounted for 70% of the measurement variance and can therefore be reduced by replicating the conversion. We applied the method to clay models of known volume and found no indication of bias. The estimation was robust against variation in imaging device, distance and operator, but approximately 40 images per specimen were necessary to achieve good precision. We used the method to show that conventional measures of main-beam length are relatively poor estimators of antler volume. Using loose antlers of known weight, we also showed that the volume may be a relatively poor predictor of antler weight due to variation in bone density across species. We conclude that photogrammetry can be an efficient and accurate tool for measuring antlers, and likely many other complex morphological traits

    Evolvability in the fossil record

    Get PDF
    The concept of evolvability—the capacity of a population to produce and maintain evolutionarily relevant variation—has become increasingly prominent in evolutionary biology. Paleontology has a long history of investigating questions of evolvability, but paleontological thinking has tended to neglect recent discussions, because many tools used in the current evolvability literature are challenging to apply to the fossil record. The fundamental difficulty is how to disentangle whether the causes of evolutionary patterns arise from variational properties of traits or lineages rather than being due to selection and ecological success. Despite these obstacles, the fossil record offers unique and growing sources of data that capture evolutionary patterns of sustained duration and significance otherwise inaccessible to evolutionary biologists. Additionally, there exist a variety of strategic possibilities for combining prominent neontological approaches to evolvability with those from paleontology. We illustrate three of these possibilities with quantitative genetics, evolutionary developmental biology, and phylogenetic models of macroevolution. In conclusion, we provide a methodological schema that focuses on the conceptualization, measurement, and testing of hypotheses to motivate and provide guidance for future empirical and theoretical studies of evolvability in the fossil record

    Measurement theory and paleobiology

    Get PDF
    Measurement theory, a branch of applied mathematics, offers guiding principles for extracting meaning from empirical observations and is applicable to any science involving measurements. Measurement theory is highly relevant in paleobiology because statistical approaches assuming ratio-scaled variables are commonly used on data belonging to nominal and ordinal scale types. We provide an informal introduction to representational measurement theory and argue for its importance in robust scientific inquiry. Although measurement theory is widely applicable in paleobiology research, we use the study of disparity to illustrate measurement theoretical challenges in the quantitative study of the fossil record. Respecting the inherent properties of different measurements enables meaningful inferences about evolutionary and ecological processes from paleontological data

    A Cautionary Note on "A Cautionary Note on the Use of Ornstein Uhlenbeck Models in Macroevolutionary Studies".

    Get PDF
    Models based on the Ornstein-Uhlenbeck process have become standard for the comparative study of adaptation. Cooper et al. (2016) have cast doubt on this practice by claiming statistical problems with fitting Ornstein-Uhlenbeck models to comparative data. Specifically, they claim that statistical tests of Brownian motion may have too high Type I error rates and that such error rates are exacerbated by measurement error. In this note, we argue that these results have little relevance to the estimation of adaptation with Ornstein-Uhlenbeck models for three reasons. First, we point out that Cooper et al. (2016) did not consider the detection of distinct optima (e.g. for different environments), and therefore did not evaluate the standard test for adaptation. Second, we show that consideration of parameter estimates, and not just statistical significance, will usually lead to correct inferences about evolutionary dynamics. Third, we show that bias due to measurement error can be corrected for by standard methods. We conclude that Cooper et al. (2016) have not identified any statistical problems specific to Ornstein-Uhlenbeck models, and that their cautions against their use in comparative analyses are unfounded and misleading. [adaptation, Ornstein-Uhlenbeck model, phylogenetic comparative method.]

    Comparative morphological trade-offs between pre- and post-copulatory sexual selection in Giant hissing cockroaches (Tribe: Gromphadorhini)

    Get PDF
    Sperm competition theory predicts that animals face a trade-off between investment in weaponry and investment in ejaculate composition. Within the Madagascan giant hissing cockroaches (Tribe Gromphadorhini) differences in morphology exist that may indicate differing strategies of male-male competition. We compared relative pronotal horn length using high-resolution X-ray CT scanning data, relative testes mass, and male-male agonistic behaviour between two species of hissing cockroaches, Gromphadorhina oblongonota and Aeluropoda insignis. The gross morphology and behaviour of these two species indicated that G. oblongonota is selected for pre-copulatory mate acquisition and that A. insignis is selected for post-copulatory sperm competition. We found evidence for a trade-off when investing in testes mass vs. horn length between the species. The large, aggressive G. oblongonota follows a strategy of greater investment in weapons at the expense of testes mass while the smaller, less-aggressive A. insignis invests in relatively greater testes mass and less in pronotal weapon length. We also found evidence of a trade-off within each species, where individuals invest more heavily in weapon length at the expense of testes mass. These findings support the predictions of pre- and postcopulatory competitive investment trade-offs for a relatively understudied Tribe of cockroaches

    Paleozoic origins of cheilostome bryozoans and their parental care inferred by a new genome-skimmed phylogeny

    Get PDF
    Phylogenetic relationships and the timing of evolutionary events are essential for understanding evolution on longer time scales. Cheilostome bryozoans are a group of ubiquitous, species-rich, marine colonial organisms with an excellent fossil record but lack phylogenetic relationships inferred from molecular data. We present genome-skimmed data for 395 cheilostomes and combine these with 315 published sequences to infer relationships and the timing of key events among c. 500 cheilostome species. We find that named cheilostome genera and species are phylogenetically coherent, rendering fossil or contemporary specimens readily delimited using only skeletal morphology. Our phylogeny shows that parental care in the form of brooding evolved several times independently but was never lost in cheilostomes. Our fossil calibration, robust to varied assumptions, indicates that the cheilostome lineage and parental care therein could have Paleozoic origins, much older than the first known fossil record of cheilostomes in the Late Jurassic

    Correlation between investment in sexual traits and valve sexual dimorphism in Cyprideis species (Ostracoda)

    Get PDF
    Assessing the long-term macroevolutionary consequences of sexual selection has been hampered by the difficulty of studying this process in the fossil record. Cytheroid ostracodes offer an excellent system to explore sexual selection in the fossil record because their readily fossilized carapaces are sexually dimorphic. Specifically, males are relatively more elongate than females in this superfamily. This sexual shape difference is thought to arise so that males carapaces can accommodate their very large copulatory apparatus, which can account for up to one-third of body volume. Here we test this widely held explanation for sexual dimorphism in cytheroid ostracodes by correlating investment in male genitalia, a trait in which sexual selection is seen as the main evolutionary driver, with sexual dimorphism of carapace in the genus Cyprideis. We analyzed specimens collected in the field (C. salebrosa, USA; C. torosa, UK) and from collections of the National Museum of Natural History, Washington, DC (C. mexicana). We digitized valve outlines in lateral view to obtain measures of size (valve area) and shape (elongation, measured as length to height ratio), and obtained several dimensions from two components of the hemipenis: the muscular basal capsule, which functions as a sperm pump, and the section that includes the intromittent organ (terminal extension). In addition to the assessment of this primary sexual trait, we also quantified two dimensions of the male secondary sexual trait-where the transformed right walking leg functions as a clasping organ during mating. We also measured linear dimensions from four limbs as indicators of overall (soft-part) body size, and assessed allometry of the soft anatomy. We observed significant correlations in males between valve size, but not elongation, and distinct structural parts of the hemipenis, even after accounting for their shared correlation with overall body size. We also found weak but significant positive correlation between valve elongation and the degree of sexual dimorphism of the walking leg, but only in C. torosa. The correlation between the hemipenis parts, especially basal capsule size and male valve size dimorphism suggests that sexual selection on sperm size, quantity, and/or efficiency of transfer may drive sexual size dimorphism in these species, although we cannot exclude other aspects of sexual and natural selection

    Interspecific interactions through 2 million years: are competitive outcomes predictable?

    Get PDF
    Ecological interactions affect the survival and reproduction of individuals. However, ecological interactions are notoriously difficult to measure in extinct populations, hindering our understanding of how the outcomes of interactions such as competition vary in time and influence long-term evolutionary changes. Here, the outcomes of spatial competition in a temporally continuous community over evolutionary timescales are presented for the first time. Our research domain is encrusting cheilostome bryozoans from the Wanganui Basin of New Zealand over a ca 2 Myr time period (Pleistocene to Recent). We find that a subset of species can be identified as consistent winners, and others as consistent losers, in the sense that they win or lose interspecific competitive encounters statistically more often than the null hypothesis of 50%. Most species do not improve or worsen in their competitive abilities through the 2 Myr period, but a minority of species are winners in some intervals and losers in others. We found that conspecifics tend to cluster spatially and interact more often than expected under null hypothesis: most of these are stand-off interactions where the two colonies involved stopped growing at edges of encounter. Counterintuitively, competitive ability has no bearing on ecological dominance.(c) 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The attached file is the published version of the article
    corecore