73 research outputs found
Detecting the orientation of magnetic fields in galaxy clusters
Clusters of galaxies, filled with hot magnetized plasma, are the largest
bound objects in existence and an important touchstone in understanding the
formation of structures in our Universe. In such clusters, thermal conduction
follows field lines, so magnetic fields strongly shape the cluster's thermal
history; that some have not since cooled and collapsed is a mystery. In a
seemingly unrelated puzzle, recent observations of Virgo cluster spiral
galaxies imply ridges of strong, coherent magnetic fields offset from their
centre. Here we demonstrate, using three-dimensional magnetohydrodynamical
simulations, that such ridges are easily explained by galaxies sweeping up
field lines as they orbit inside the cluster. This magnetic drape is then lit
up with cosmic rays from the galaxies' stars, generating coherent polarized
emission at the galaxies' leading edges. This immediately presents a technique
for probing local orientations and characteristic length scales of cluster
magnetic fields. The first application of this technique, mapping the field of
the Virgo cluster, gives a startling result: outside a central region, the
magnetic field is preferentially oriented radially as predicted by the
magnetothermal instability. Our results strongly suggest a mechanism for
maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in
Nature Physics, high-resolution version available at
http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd
Home-Based Monitoring of Pulmonary Function in Patients with Duchenne Muscular Dystroph
BACKGROUND: Loss of pulmonary function is a main cause of early morbidity and mortality in patients with Duchenne muscular dystrophy (DMD). Standard of care guidelines recommend regular assessment of pulmonary function by hospital-based spirometry to detect onset and monitor progression of pulmonary function decline. OBJECTIVE: To assess the feasibility of home-based monitoring of pulmonary function by a hand-held device (HHD) in adolescent and adult patients with DMD over a period of 12 months. METHODS: In the phase III randomized placebo-controlled DELOS trial in 10-18 year old DMD patients, peak expiratory flow (PEF) measurements were collected weekly at home by the patient (assisted by parent/caregiver) using a peak flow meter HHD. Adherence to the use of the HHD was assessed and 12-month changes in PEF as percent of predicted (PEF% p) for the idebenone (N = 31) and the placebo treatment groups (N = 33) from HHD-derived data were compared to results from hospital-based spirometry. RESULTS: A total of 2689 individual HHD assessments were analysed. Overall adherence to the use of the HHD over the course of the 12-month study duration was good (75.9%, SD 21.5%) and PEF% p data obtained at the same day by HHD and standard spirometry correlated well (Spearman's rho 0.80; p < 0.001). Several analysis methods of HHD-derived data for PEF% p consistently demonstrate that idebenone treatment slowed the decline in PEF% p compared to placebo, which supports the statistically significant difference in favour of idebenone for PEF% p measured by standard spirometry. CONCLUSIONS: This study demonstrates that home-based monitoring of pulmonary function in adolescent patients with DMD using a HHD is feasible, provides reliable data compared to hospital-based spirometry and is therefore suitable for use in clinical practice and for clinical trials
Treatment effect of idebenone on inspiratory function in patients with Duchenne muscular dystrophy
Assessment of dynamic inspiratory function may provide valuable information about the degree and progression of pulmonary involvement in patients with Duchenne muscular dystrophy (DMD). The aims of this study were to characterize inspiratory function and to assess the efficacy of idebenone on this pulmonary function outcome in a large and well‐characterized cohort of 10–18 year‐old DMD patients not taking glucocorticoid steroids (GCs) enrolled in the phase 3 randomized controlled DELOS trial. We evaluated the effect of idebenone on the highest flow generated during an inspiratory FVC maneuver (maximum inspiratory flow; V'I,max(FVC)) and the ratio between the largest inspiratory flow during tidal breathing (tidal inspiratory flow; V'I,max(t)) and the V'I,max(FVC). The fraction of the maximum flow that is not used during tidal breathing has been termed inspiratory flow reserve (IFR). DMD patients in both treatment groups of DELOS (idebenone, n = 31; placebo: n = 33) had comparable and abnormally low V'I,max(FVC) at baseline. During the study period, V'I,max(FVC) further declined by −0.29 L/sec in patients on placebo (95%CI: −0.51, −0.08; P = 0.008 at week 52), whereas it remained stable in patients on idebenone (change from baseline to week 52: 0.01 L/sec; 95%CI: −0.22, 0.24; P = 0.950). The between‐group difference favoring idebenone was 0.27 L/sec (P = 0.043) at week 26 and 0.30 L/sec (P = 0.061) at week 52. In addition, during the study period, IFR improved by 2.8% in patients receiving idebenone and worsened by −3.0% among patients on placebo (between‐group difference 5.8% at week 52; P = 0.040). Although the clinical interpretation of these data is currently limited due to the scarcity of routine clinical practice experience with dynamic inspiratory function outcomes in DMD, these findings from a randomized controlled study nevertheless suggest that idebenone preserved inspiratory muscle function as assessed by V'I,max(FVC) and IFR in patients with DMD
Imprint of Drivers of Galaxy Formation in the Circumgalactic Medium
The majority of baryons reside beyond the optical extent of a galaxy in the circumgalactic and intergalactic media (CGM/IGM). Gaseous halos are inextricably linked to the appearance of their host galaxies through a complex story of accretion, feedback, and continual recycling. The energetic processes, which define the state of gas in the CGM, are the same ones that 1) regulate stellar growth so that it is not over-efficient, and 2) create the diversity of today's galaxy colors, SFRs, and morphologies spanning Hubble's Tuning Fork Diagram. They work in concert to set the speed of growth on the star-forming Main Sequence, transform a galaxy across the Green Valley, and maintain a galaxy's quenched appearance on the Red Sequence. Most baryons in halos more massive than 10^12 Msolar along with their high-energy physics and dynamics remain invisible because that gas is heated above the UV ionization states. We argue that information on many of the essential drivers of galaxy evolution is primarily contained in this "missing" hot gas phase. Completing the picture of galaxy formation requires uncovering the physical mechanisms behind stellar and SMBH feedback driving mass, metals, and energy into the CGM. By opening galactic hot halos to new wavebands, we not only obtain fossil imprints of >13 Gyrs of evolution, but observe on-going hot-mode accretion, the deposition of superwind outflows into the CGM, and the re-arrangement of baryons by SMBH feedback. A description of the flows of mass, metals, and energy will only be complete by observing the thermodynamic states, chemical compositions, structure, and dynamics of T>=10^6 K halos. These measurements are uniquely possible with a next-generation X-ray observatory if it provides the sensitivity to detect faint CGM emission, spectroscopic power to measure absorption lines and gas motions, and high spatial resolution to resolve structures
A census of baryons in the Universe from localized fast radio bursts
More than three quarters of the baryonic content of the Universe resides in a
highly diffuse state that is difficult to observe, with only a small fraction
directly observed in galaxies and galaxy clusters. Censuses of the nearby
Universe have used absorption line spectroscopy to observe these invisible
baryons, but these measurements rely on large and uncertain corrections and are
insensitive to the majority of the volume, and likely mass. Specifically,
quasar spectroscopy is sensitive either to only the very trace amounts of
Hydrogen that exists in the atomic state, or highly ionized and enriched gas in
denser regions near galaxies. Sunyaev-Zel'dovich analyses provide evidence of
some of the gas in filamentary structures and studies of X-ray emission are
most sensitive to gas near galaxy clusters. Here we report the direct
measurement of the baryon content of the Universe using the dispersion of a
sample of localized fast radio bursts (FRBs), thus utilizing an effect that
measures the electron column density along each sight line and accounts for
every ionised baryon. We augment the sample of published arcsecond-localized
FRBs with a further four new localizations to host galaxies which have measured
redshifts of 0.291, 0.118, 0.378 and 0.522, completing a sample sufficiently
large to account for dispersion variations along the line of sight and in the
host galaxy environment to derive a cosmic baryon density of (95% confidence). This independent
measurement is consistent with Cosmic Microwave Background and Big Bang
Nucleosynthesis values.Comment: Published online in Nature 27 May, 202
The one dimensional Kondo lattice model at partial band filling
The Kondo lattice model introduced in 1977 describes a lattice of localized
magnetic moments interacting with a sea of conduction electrons. It is one of
the most important canonical models in the study of a class of rare earth
compounds, called heavy fermion systems, and as such has been studied
intensively by a wide variety of techniques for more than a quarter of a
century. This review focuses on the one dimensional case at partial band
filling, in which the number of conduction electrons is less than the number of
localized moments. The theoretical understanding, based on the bosonized
solution, of the conventional Kondo lattice model is presented in great detail.
This review divides naturally into two parts, the first relating to the
description of the formalism, and the second to its application. After an
all-inclusive description of the bosonization technique, the bosonized form of
the Kondo lattice hamiltonian is constructed in detail. Next the
double-exchange ordering, Kondo singlet formation, the RKKY interaction and
spin polaron formation are described comprehensively. An in-depth analysis of
the phase diagram follows, with special emphasis on the destruction of the
ferromagnetic phase by spin-flip disorder scattering, and of recent numerical
results. The results are shown to hold for both antiferromagnetic and
ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure
Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry
OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc).
METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers.
RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group.
CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
Hot atmospheres of galaxies, groups, and clusters of galaxies
Most of the ordinary matter in the local Universe has not been converted into
stars but resides in a largely unexplored diffuse, hot, X-ray emitting plasma.
It pervades the gravitational potentials of massive galaxies, groups and
clusters of galaxies, as well as the filaments of the cosmic web. The physics
of this hot medium, such as its dynamics, thermodynamics and chemical
composition can be studied using X-ray spectroscopy in great detail. Here, we
present an overview of the basic properties and discuss the self similarity of
the hot "atmospheres" permeating the gravitational halos from the scale of
galaxies, through groups, to massive clusters. Hot atmospheres are stabilised
by the activity of supermassive black holes and, in many ways, they are of key
importance for the evolution of their host galaxies. The hot plasma has been
significantly enriched in heavy elements by supernovae during the period of
maximum star formation activity, probably more than 10 billion years ago. High
resolution X-ray spectroscopy just started to be able to probe the dynamics of
atmospheric gas and future space observatories will determine the properties of
the currently unseen hot diffuse medium throughout the cosmic web.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern
Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka;
publisher Springer Nature) funded by the European Union Erasmus+ Strategic
Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556
Evidence for X-ray emission from a large-scale filament of galaxies?
Cosmological simulations predict that a large fraction of the baryonic mass of the universe exists as 10(5)-10(7) K diffuse, X-ray-emitting gas, tracing low-density filament and sheetlike structures exterior to massive clusters of galaxies. If present, this gas helps reconcile the current shortfall in observed baryon counts relative to the predictions of the standard big bang model. We present here the discovery and analysis of a 5 sigma significance half-degree filamentary structure, which is present in both the I-band salary surface density and the unresolved X-ray emission in a deep ROSAT PSPC field. The estimated diffuse X-ray emission component of this structure has a surface brightness of similar or equal to 1.6 x 10(-16) ergs s(-1) cm(-2) arcmin(-2) (0.5-2 keV), comparable to the predictions for intercluster gas, and may represent a direct detection of this currently unconfirmed baryonic component
074 Long-term effect of idebenone in reducing respiratory function decline in patients with Duchenne muscular dystrophy
Two placebo-controlled trials of 52-week duration showed that idebenone consistently reduced respira- tory function decline rate in patients with DMD. Long-term data from the DELPHI-Extension (DELPHI-E) study and SYROS (DELOS patients who transitioned to idebenone under an Expanded Access Program) are now presented. The aim was to assess the consistency of the long-term effect of idebenone.11 DELPHI-E and 18 SYROS patients with abnormal (<80%) forced vital capacity (as percent predicted, FVC%p) were treated with idebenone for an average of 2.0 and 4.2 years respectively. Annualized FVC%p decline rates were compared to untreated patients from SYROS or matched external controls.Mean (SD) baseline age was 13.6 (2.3) and 13.3 (2.7) years in DELPHI (N=11) and DELOS (N=18), respec- tively, and FVC%p was 47.2% (19.7%) and 58.7% (17.6%). For the first 2-year period, the average annual decline rate was comparable in treated patients (4.5% and 5.4% in DELPHI-E and SYROS) and lower than in untreated SYROS patients and external controls (7.9% untreated and 8.1% in CINRG-DNHS). During years 3–6, the annual decline rate was consistently lower than for matched controls.Treatment with idebenone resulted in a sustained reduction in the rate of decline in respiratory function. [email protected]</jats:p
- …
