64 research outputs found

    Home-Based Monitoring of Pulmonary Function in Patients with Duchenne Muscular Dystroph

    Get PDF
    BACKGROUND: Loss of pulmonary function is a main cause of early morbidity and mortality in patients with Duchenne muscular dystrophy (DMD). Standard of care guidelines recommend regular assessment of pulmonary function by hospital-based spirometry to detect onset and monitor progression of pulmonary function decline. OBJECTIVE: To assess the feasibility of home-based monitoring of pulmonary function by a hand-held device (HHD) in adolescent and adult patients with DMD over a period of 12 months. METHODS: In the phase III randomized placebo-controlled DELOS trial in 10-18 year old DMD patients, peak expiratory flow (PEF) measurements were collected weekly at home by the patient (assisted by parent/caregiver) using a peak flow meter HHD. Adherence to the use of the HHD was assessed and 12-month changes in PEF as percent of predicted (PEF% p) for the idebenone (N = 31) and the placebo treatment groups (N = 33) from HHD-derived data were compared to results from hospital-based spirometry. RESULTS: A total of 2689 individual HHD assessments were analysed. Overall adherence to the use of the HHD over the course of the 12-month study duration was good (75.9%, SD 21.5%) and PEF% p data obtained at the same day by HHD and standard spirometry correlated well (Spearman's rho 0.80; p < 0.001). Several analysis methods of HHD-derived data for PEF% p consistently demonstrate that idebenone treatment slowed the decline in PEF% p compared to placebo, which supports the statistically significant difference in favour of idebenone for PEF% p measured by standard spirometry. CONCLUSIONS: This study demonstrates that home-based monitoring of pulmonary function in adolescent patients with DMD using a HHD is feasible, provides reliable data compared to hospital-based spirometry and is therefore suitable for use in clinical practice and for clinical trials

    Detecting the orientation of magnetic fields in galaxy clusters

    Full text link
    Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so magnetic fields strongly shape the cluster's thermal history; that some have not since cooled and collapsed is a mystery. In a seemingly unrelated puzzle, recent observations of Virgo cluster spiral galaxies imply ridges of strong, coherent magnetic fields offset from their centre. Here we demonstrate, using three-dimensional magnetohydrodynamical simulations, that such ridges are easily explained by galaxies sweeping up field lines as they orbit inside the cluster. This magnetic drape is then lit up with cosmic rays from the galaxies' stars, generating coherent polarized emission at the galaxies' leading edges. This immediately presents a technique for probing local orientations and characteristic length scales of cluster magnetic fields. The first application of this technique, mapping the field of the Virgo cluster, gives a startling result: outside a central region, the magnetic field is preferentially oriented radially as predicted by the magnetothermal instability. Our results strongly suggest a mechanism for maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in Nature Physics, high-resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd

    Treatment effect of idebenone on inspiratory function in patients with Duchenne muscular dystrophy

    Get PDF
    Assessment of dynamic inspiratory function may provide valuable information about the degree and progression of pulmonary involvement in patients with Duchenne muscular dystrophy (DMD). The aims of this study were to characterize inspiratory function and to assess the efficacy of idebenone on this pulmonary function outcome in a large and well‐characterized cohort of 10–18 year‐old DMD patients not taking glucocorticoid steroids (GCs) enrolled in the phase 3 randomized controlled DELOS trial. We evaluated the effect of idebenone on the highest flow generated during an inspiratory FVC maneuver (maximum inspiratory flow; V'I,max(FVC)) and the ratio between the largest inspiratory flow during tidal breathing (tidal inspiratory flow; V'I,max(t)) and the V'I,max(FVC). The fraction of the maximum flow that is not used during tidal breathing has been termed inspiratory flow reserve (IFR). DMD patients in both treatment groups of DELOS (idebenone, n = 31; placebo: n = 33) had comparable and abnormally low V'I,max(FVC) at baseline. During the study period, V'I,max(FVC) further declined by −0.29 L/sec in patients on placebo (95%CI: −0.51, −0.08; P = 0.008 at week 52), whereas it remained stable in patients on idebenone (change from baseline to week 52: 0.01 L/sec; 95%CI: −0.22, 0.24; P = 0.950). The between‐group difference favoring idebenone was 0.27 L/sec (P = 0.043) at week 26 and 0.30 L/sec (P = 0.061) at week 52. In addition, during the study period, IFR improved by 2.8% in patients receiving idebenone and worsened by −3.0% among patients on placebo (between‐group difference 5.8% at week 52; P = 0.040). Although the clinical interpretation of these data is currently limited due to the scarcity of routine clinical practice experience with dynamic inspiratory function outcomes in DMD, these findings from a randomized controlled study nevertheless suggest that idebenone preserved inspiratory muscle function as assessed by V'I,max(FVC) and IFR in patients with DMD

    Imprint of Drivers of Galaxy Formation in the Circumgalactic Medium

    Get PDF
    The majority of baryons reside beyond the optical extent of a galaxy in the circumgalactic and intergalactic media (CGM/IGM). Gaseous halos are inextricably linked to the appearance of their host galaxies through a complex story of accretion, feedback, and continual recycling. The energetic processes, which define the state of gas in the CGM, are the same ones that 1) regulate stellar growth so that it is not over-efficient, and 2) create the diversity of today's galaxy colors, SFRs, and morphologies spanning Hubble's Tuning Fork Diagram. They work in concert to set the speed of growth on the star-forming Main Sequence, transform a galaxy across the Green Valley, and maintain a galaxy's quenched appearance on the Red Sequence. Most baryons in halos more massive than 10^12 Msolar along with their high-energy physics and dynamics remain invisible because that gas is heated above the UV ionization states. We argue that information on many of the essential drivers of galaxy evolution is primarily contained in this "missing" hot gas phase. Completing the picture of galaxy formation requires uncovering the physical mechanisms behind stellar and SMBH feedback driving mass, metals, and energy into the CGM. By opening galactic hot halos to new wavebands, we not only obtain fossil imprints of >13 Gyrs of evolution, but observe on-going hot-mode accretion, the deposition of superwind outflows into the CGM, and the re-arrangement of baryons by SMBH feedback. A description of the flows of mass, metals, and energy will only be complete by observing the thermodynamic states, chemical compositions, structure, and dynamics of T>=10^6 K halos. These measurements are uniquely possible with a next-generation X-ray observatory if it provides the sensitivity to detect faint CGM emission, spectroscopic power to measure absorption lines and gas motions, and high spatial resolution to resolve structures

    A census of baryons in the Universe from localized fast radio bursts

    Get PDF
    More than three quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to observe, with only a small fraction directly observed in galaxies and galaxy clusters. Censuses of the nearby Universe have used absorption line spectroscopy to observe these invisible baryons, but these measurements rely on large and uncertain corrections and are insensitive to the majority of the volume, and likely mass. Specifically, quasar spectroscopy is sensitive either to only the very trace amounts of Hydrogen that exists in the atomic state, or highly ionized and enriched gas in denser regions near galaxies. Sunyaev-Zel'dovich analyses provide evidence of some of the gas in filamentary structures and studies of X-ray emission are most sensitive to gas near galaxy clusters. Here we report the direct measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts (FRBs), thus utilizing an effect that measures the electron column density along each sight line and accounts for every ionised baryon. We augment the sample of published arcsecond-localized FRBs with a further four new localizations to host galaxies which have measured redshifts of 0.291, 0.118, 0.378 and 0.522, completing a sample sufficiently large to account for dispersion variations along the line of sight and in the host galaxy environment to derive a cosmic baryon density of Ωb=0.051−0.025+0.021 h70−1\Omega_{b} = 0.051_{-0.025}^{+0.021} \, h_{70}^{-1} (95% confidence). This independent measurement is consistent with Cosmic Microwave Background and Big Bang Nucleosynthesis values.Comment: Published online in Nature 27 May, 202

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Hot atmospheres of galaxies, groups, and clusters of galaxies

    Full text link
    Most of the ordinary matter in the local Universe has not been converted into stars but resides in a largely unexplored diffuse, hot, X-ray emitting plasma. It pervades the gravitational potentials of massive galaxies, groups and clusters of galaxies, as well as the filaments of the cosmic web. The physics of this hot medium, such as its dynamics, thermodynamics and chemical composition can be studied using X-ray spectroscopy in great detail. Here, we present an overview of the basic properties and discuss the self similarity of the hot "atmospheres" permeating the gravitational halos from the scale of galaxies, through groups, to massive clusters. Hot atmospheres are stabilised by the activity of supermassive black holes and, in many ways, they are of key importance for the evolution of their host galaxies. The hot plasma has been significantly enriched in heavy elements by supernovae during the period of maximum star formation activity, probably more than 10 billion years ago. High resolution X-ray spectroscopy just started to be able to probe the dynamics of atmospheric gas and future space observatories will determine the properties of the currently unseen hot diffuse medium throughout the cosmic web.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Evidence for X-ray emission from a large-scale filament of galaxies?

    No full text
    Cosmological simulations predict that a large fraction of the baryonic mass of the universe exists as 10(5)-10(7) K diffuse, X-ray-emitting gas, tracing low-density filament and sheetlike structures exterior to massive clusters of galaxies. If present, this gas helps reconcile the current shortfall in observed baryon counts relative to the predictions of the standard big bang model. We present here the discovery and analysis of a 5 sigma significance half-degree filamentary structure, which is present in both the I-band salary surface density and the unresolved X-ray emission in a deep ROSAT PSPC field. The estimated diffuse X-ray emission component of this structure has a surface brightness of similar or equal to 1.6 x 10(-16) ergs s(-1) cm(-2) arcmin(-2) (0.5-2 keV), comparable to the predictions for intercluster gas, and may represent a direct detection of this currently unconfirmed baryonic component
    • 

    corecore