127 research outputs found

    Effect of GA 3 and paclobutrazol on adventitious shoot regeneration of two Pelargonium sp

    Get PDF
    This study had two aims. The first was to improve the regeneration efficiency of Pelargonium leaf discs by adventitious budding. The second was to test the effect of gibberellic acid (GA 3) and paclobutrazol (PBZ) on callus formation and adventitious shoot regeneration in Pelargonium before using genetic transformation of this species for functional validation of genes involved in the process of GA regulation. GA 3 and paclobutrazol (an inhibitor of GA synthesis pathway) were added (together or separately) in the shoot regeneration media of two Pelargonium species, Pelargonium * hortorum \u27Panache sud\u27 (\u27P.sud\u27) and Pelargonium * domesticum \u27Autumn haze\u27 (\u27 P.dom\u27). In both cases, GA 3 applied alone, completely inhibited the bud regeneration. Moreover, the rate of callus formation decreased drastically when 5 M of GA 3 was applied to \u27 P. dom\u27 explants. Similar result was obtained with \u27P.sud\u27 explants using 20 M GA 3. Paclobutrazol (0.3 M) applied at the same time as GA 3 (10 M) could partially restore regeneration process of \u27 P. dom\u27. For \u27 P. dom\u27, the use of paclobutrazol alone increased callus formation and slightly improved the rate of regeneration. Moreover, initiated buds had a better appearance. For \u27P. sud\u27, which had an abundant callusing, paclobutrazol did not improve regeneration and led to hyperhydric shoots

    Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants

    Get PDF
    Key message We reported the cloning of a rose DELLA gene. We obtained transgenic Pelargonium lines overexpressing this gene which presented several phenotypes in plant growth, root growth, flowering time and number of inflorescences. Abstract Control of development is an important issue for production of ornamental plant. The plant growth regulator, gibberellins (GAs), plays a pivotal role in regulating plant growth and development. DELLA proteins are nuclear negative regulator of GA signalling. Our objective was to study the role of GA in the plant architecture and in the blooming of ornamentals. We cloned a rose DELLA homologous gene, RoDELLA, and studied its function by genetic transformation of pelargonium. Several transgenic pelargonium (Pelargonium × domesticum ‘Autum Haze’) lines were produced that ectopically expressed RoDELLA under the control of the 35S promoter. These transgenic plants exhibited a range of phenotypes which could be related to the reduction in GA response. Most of transgenic plants showed reduced growth associated to an increase of the node and branch number. Moreover, overexpression of RoDELLA blocked or delayed flowering in transgenic pelargonium and exhibited defects in the root formation. We demonstrated that pelargonium could be used to validate ornamental gene as the rose DELLA gene. RoDELLA overexpression modified many aspects of plant developmental pathways, as the plant growth, the transition of vegetative to floral stage and the ability of rooting

    Role of Magmas in protein transport and human mitochondria biogenesis

    Get PDF
    Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of Δpam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    A high-quality sequence of Rosa chinensis to elucidate genome structure and ornamental traits

    Get PDF
    Rose is the worlds most important ornamental plant with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Rose has a complex genome with high heterozygosity and various ploidy levels. Our objectives were (i) to develop the first high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short read sequencing, and anchoring to a high-density genetic map and (ii) to study the genome structure and the genetic basis of major ornamental traits. We produced a haploid rose line from R. chinensis "Old Blush" and generated the first rose genome sequence at the pseudo-molecule scale (512 Mbp with N50 of 3.4 Mb and L75 of 97). The sequence was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features including the pericentromeric regions through annotation of TE families and positioned centromeric repeats using FISH. Genetic diversity was analysed by resequencing eight Rosa species. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and number of flower petals. A rose APETALA2 homologue is proposed to be the major regulator of petals number in rose. This reference sequence is an important resource for studying polyploidisation, meiosis and developmental processes as we demonstrated for flower and prickle development. This reference sequence will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae

    Development and application of bivariate 2D-EMD for the analysis of instantaneous flow structures and cycle-to-cycle variations of in-cylinder flow

    Get PDF
    International audienceThe bivariate two dimensional empirical mode decomposition (Bivariate 2D-EMD) is extended to estimate the turbulent fluctuations and to identify cycle-to-cycle variations (CCV) of in-cylinder flow. The Bivariate 2D-EMD is an adaptive approach that is not restricted by statistical convergence criterion, hence it can be used for analyzing the nonlinear and non-stationary phenomena. The methodology is applied to a high-speed PIV dataset that measures the velocity field within the tumble symmetry plane of an optically accessible engine. The instantaneous velocity field is decomposed into a finite number of 2D spatial modes. Based on energy considerations, the in-cylinder flow large-scale organized motion is separated from turbulent fluctuations. This study is focused on the second half of the compression stroke. For most of the cycles, the maximum of turbulent fluctuations is located between 50 and 30 crank angle degrees before top dead center (TDC). In regards to the phase-averaged velocity field, the contribution of CCV to the fluctuating kinetic energy is approximately 55% near TDC

    Constitutive Expression of TNF-Related Activation-Induced Cytokine (TRANCE)/Receptor Activating NF-κB Ligand (RANK)-L by Rat Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are a subset of DCs whose major function relies on their capacity to produce large amount of type I IFN upon stimulation via TLR 7 and 9. This function is evolutionary conserved and place pDC in critical position in the innate immune response to virus. Here we show that rat pDC constitutively express TNF-related activation-induced cytokine (TRANCE) also known as Receptor-activating NF-κB ligand (RANKL). TRANCE/RANKL is a member of the TNF superfamily which plays a central role in osteoclastogenesis through its interaction with its receptor RANK. TRANCE/RANK interaction are also involved in lymphoid organogenesis as well as T cell/DC cross talk. Unlike conventional DC, rat CD4high pDC were shown to constitutively express TRANCE/RANKL both at the mRNA and the surface protein level. TRANCE/RANKL was also induced on the CD4low subsets of pDC following activation by CpG. The secreted form of TRANCE/RANKL was also produced by rat pDC. Of note, levels of mRNA, surface and secreted TRANCE/RANKL expression were similar to that observed for activated T cells. TRANCE/RANKL expression was found on pDC in all lymphoid organs as well blood and BM with a maximum expression in mesenteric lymph nodes. Despite this TRANCE/RANKL expression, we were unable to demonstrate in vitro osteoclastogenesis activity for rat pDC. Taken together, these data identifies pDC as novel source of TRANCE/RANKL in the immune system

    The Aggregation and Neurotoxicity of TDP-43 and Its ALS-Associated 25 kDa Fragment Are Differentially Affected by Molecular Chaperones in Drosophila

    Get PDF
    Almost all cases of sporadic amyotrophic lateral sclerosis (ALS), and some cases of the familial form, are characterised by the deposition of TDP-43, a member of a family of heteronuclear ribonucleoproteins (hnRNP). Although protein misfolding and deposition is thought to be a causative feature of many of the most prevalent neurodegenerative diseases, a link between TDP-43 aggregation and the dysfunction of motor neurons has yet to be established, despite many correlative neuropathological studies. We have investigated this relationship in the present study by probing the effect of altering TDP-43 aggregation behaviour in vivo by modulating the levels of molecular chaperones in a Drosophila model. More specifically, we quantify the effect of either pharmacological upregulation of the heat shock response or specific genetic upregulation of a small heat shock protein, CG14207, on the neurotoxicity of both TDP-43 and of its disease associated 25 kDa fragment (TDP-25) in a Drosophila model. Inhibition of the aggregation of TDP-43 by either method results in a partial reduction of its neurotoxic effects on both photoreceptor and motor neurons, whereas inhibition of the aggregation of TDP-25 results not only in a complete suppression of its toxicity but also its clearance from the brain in both neuronal subtypes studied. The results demonstrate, therefore, that aggregation plays a crucial role in mediating the neurotoxic effects of both full length and truncated TDP-43, and furthermore reveal that the in vivo propensity of these two proteins to aggregate and their susceptibility to molecular chaperone mediated clearance are quite distinct

    Identification of Potential Therapeutic Drugs for Huntington's Disease using Caenorhabditis elegans

    Get PDF
    The prolonged time course of Huntington's disease (HD) neurodegeneration increases both the time and cost of testing potential therapeutic compounds in mammalian models. An alternative is to initially assess the efficacy of compounds in invertebrate models, reducing time of testing from months to days.We screened candidate therapeutic compounds that were identified previously in cell culture/animal studies in a C. elegans HD model and found that two FDA approved drugs, lithium chloride and mithramycin, independently and in combination suppressed HD neurotoxicity. Aging is a critical contributor to late onset neurodegenerative diseases. Using a genetic strategy and a novel assay, we demonstrate that lithium chloride and mithramycin remain neuroprotective independent of activity of the forkhead transcription factor DAF-16, which mediates the effects of the insulin-like signaling pathway on aging.These results suggest that pathways involved in polyglutamine-induced degeneration are distinct from specific aging pathways. The assays presented here will be useful for rapid and inexpensive testing of other potential HD drugs and elucidating pathways of drug action. Additionally, the neuroprotection conferred by lithium chloride and mithramycin suggests that these drugs may be useful for polyglutamine disease therapy
    corecore