11 research outputs found

    Uniform selenization of crack-free films of Cu(In,Ga)Se2 nanocrystals

    Get PDF
    Crack-free films of Cu(In,Ga)Se2 (CIGS) nanocrystals were deposited with uniform thickness (>1 μm) on Mo-coated glass substrates using an ink-based, automated ultrasonic spray process, then selenized and incorporated into photovoltaic devices (PVs). The device performance depended strongly on the homogeneity of the selenized films. Cracks in the spray-deposited films resulted in uneven selenization rates and sintering by creating paths for rapid, uncontrollable selenium (Se) vapor penetration. To make crack-free films, the nanocrystals had to be completely coated with capping ligands in the ink. The selenization rate of crack-free films then depended on the thickness of the nanocrystal layer, the temperature, and duration of Se vapor exposure. Either inadequate or excessive Se exposure leads to poor device performance, generating films that were either partially sintered or exhibited significant accumulation of carbon and selenium. The deposition of uniform nanocrystal films is expected to be important for a variety of electronic and optoelectronic device applications.Fil: Harvey, Taylor B.. Texas A&M University; Estados UnidosFil: Bonafé, Franco Paúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Updegrave, Ty. University of Texas at Austin; Estados UnidosFil: Voggu, Vikas Reddy. University of Texas at Austin; Estados UnidosFil: Thomas, Cherrelle. University of Texas at Austin; Estados UnidosFil: Kamarajugadda, Sirish C.. University of Texas at Austin; Estados UnidosFil: Stolle, C. Jackson. University of Texas at Austin; Estados UnidosFil: Pernik, Douglas. University of Texas at Austin; Estados UnidosFil: Du, Jiang. University of Texas at Austin; Estados UnidosFil: Korgel, Brian A.. University of Texas at Austin; Estados Unido

    Orientationally ordered silicon nanocrystal cuboctahedra in superlattices

    Get PDF
    This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlUniform silicon nanocrystals were synthesized with cuboctahedral shape and passivated with 1-dodecene capping ligands. Transmission electron microscopy, electron diffraction, and grazing incidence wide-angle and small-angle X-ray scattering show that these soft cuboctahedra assemble into face-centered cubic superlattices with orientational order. The preferred nanocrystal orientation was found to depend on the orientation of the superlattices on the substrate, indicating that the interactions with the substrate and assembly kinetics can influence the orientation of faceted nanocrystals in superlattices

    Bubble Assemblies of Nanocrystals: Superlattices without a Substrate

    No full text
    A method was developed to create free-standing nanocrystal films in the form of solidified bubbles. Bubbles of octadecanethiol-capped gold nanocrystals were studied by in situ grazing incidence small-angle X-ray scattering (GISAXS) to determine how the absence of an underlying substrate influences a disorder–order transition of a nanocrystal superlattice. We find that the presence of the substrate does not significantly change the nature of the disorder–order transition but does lead to reduced interparticle separation and reduced thermal expansion. Bubble assemblies of silicon and copper selenide nanocrystals are also demonstrated

    Orientationally ordered silicon nanocrystal cuboctahedra in superlattices

    No full text
    This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlUniform silicon nanocrystals were synthesized with cuboctahedral shape and passivated with 1-dodecene capping ligands. Transmission electron microscopy, electron diffraction, and grazing incidence wide-angle and small-angle X-ray scattering show that these soft cuboctahedra assemble into face-centered cubic superlattices with orientational order. The preferred nanocrystal orientation was found to depend on the orientation of the superlattices on the substrate, indicating that the interactions with the substrate and assembly kinetics can influence the orientation of faceted nanocrystals in superlattices

    Cooling Dodecanethiol-Capped 2 nm Diameter Gold Nanocrystal Superlattices below Room Temperature Induces a Reversible Order–Disorder Structure Transition

    No full text
    We recently observed that a disordered assembly of octadecanethiol-capped gold (Au) nanocrystals can order when heated from room temperature to 60 °C [Yu, Y.; Jain, A.; Guillaussier, A.; Voggu, V. R.; Truskett, T. M.; Smilgies, D.-M.; Korgel, B. A. <i>Faraday Discuss.</i> <b>2015</b>, <i>181</i>, 181–192]. This “inverse melting” structural transition was reversible and occurred near the melting-solidification temperature of the capping ligands. To determine the generality of this phenomenon, we studied by in situ grazing incidence small-angle X-ray scattering (GISAXS) the structure of assemblies of Au nanocrystals with shorter C<sub>12</sub> and C<sub>5</sub> alkanethiol capping ligands that form ordered superlattices at room temperature and have a ligand melting-solidification temperature below room temperature. Superlattices of dodecanethiol-capped Au nanocrystals disorder when cooled below 260 K, which is the melting-solidification temperature for dodecanethiol. Au nanocrystals capped with even shorter pentanethiol ligands that have a melting transition below 100 K (the lowest experimentally accessible temperature) do not undergo the disorder transition

    Flexible CuInSe<sub>2</sub> Nanocrystal Solar Cells on Paper

    No full text
    Solar cells on paper have the potential to be inexpensive and portable due to several unique features of the substrate: paper is cheap, flexible, lightweight, biodegradable, and manufactured by roll-to-roll processing. Here, we report the first nanocrystal photovoltaic devices (PVs) made on paper. Using spray-deposited CuInSe<sub>2</sub> nanocrystals as the absorber material on substrates composed of bacterial cellulose nanofibers synthesized by the microorganism <i>Gluconacetobacter hansenii</i>, these devices demonstrate exceptional electrical and mechanical integrity. There is no significant loss in PV device performance after more than 100 flexes to 5 mm radius, and the devices continue to perform when folded into a crease. The practical use of these paper PVs is demonstrated with a prototype device powering liquid crystal displays (LCDs) mounted to various kinds of surfaces

    Silicon Nanocrystal Superlattice Nucleation and Growth

    No full text
    Colloidal dodecene-passivated silicon (Si) nanocrystals were dispersed in hexane or chloroform and deposited onto substrates as face-centered cubic superlattices by slowly evaporating the solvent. The uniformity of the nanocrystals enables extended order; however, the solvent and the evaporation protocol significantly influence the self-assembly process, determining the morphology of the films, the extent of order, and the superlattice orientation on the substrate. Chloroform yielded superlattices with step-flow growth morphologies and (111)<sub>SL</sub>, (100)<sub>SL</sub>, and (110)<sub>SL</sub> orientations. Hexane led to mostly island morphologies when evaporated at room temperature with exclusively (111)<sub>SL</sub> orientations. Higher evaporation temperatures led to more extensive step-flow deposition. A model for the surface diffusion of nanocrystals adsorbed on the superlattice surface is developed

    Orientationally Ordered Silicon Nanocrystal Cuboctahedra in Superlattices

    No full text
    Uniform silicon nanocrystals were synthesized with cuboctahedral shape and passivated with 1-dodecene capping ligands. Transmission electron microscopy, electron diffraction, and grazing incidence wide-angle and small-angle X-ray scattering show that these soft cuboctahedra assemble into face-centered cubic superlattices with orientational order. The preferred nanocrystal orientation was found to depend on the orientation of the superlattices on the substrate, indicating that the interactions with the substrate and assembly kinetics can influence the orientation of faceted nanocrystals in superlattices
    corecore