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Abstract 

 Crack-free films of Cu(In,Ga)Se2 (CIGS) nanocrystals were deposited with uniform thickness 

(>1m) on Mo-coated glass substrates using an ink-based, automated ultrasonic spray process, 

then selenized and incorporated into photovoltaic devices (PVs).  The device performance 

depended strongly on the homogeneity of the selenized films.  Cracks in the spray-deposited 

films resulted in uneven selenization rates and sintering by creating paths for rapid, 

uncontrollable selenium (Se) vapor penetration. To make crack-free films, the nanocrystals had 

to be completely coated with capping ligands in the ink.  The selenization rate of crack-free films 

then depended on the thickness of the nanocrystal layer, the temperature, and duration of Se 

vapor exposure.  Either inadequate or excessive Se exposure leads to poor device performance, 

generating films that were either partially sintered or exhibited significant accumulation of 

selenium. The deposition of uniform nanocrystal films is expected to be important for a variety 

of electronic and optoelectronic device applications.       

Keywords: Photovoltaics, Nanocrystals, Selenization, CIGS, Copper Indium Gallium Selenide 
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Introduction 

Colloidal nanocrystals are potentially useful for many emerging applications because of 

their wide range of unique, size-tunable properties.1–5 These applications often require 

nanocrystals deposited on a substrate.  Since nanocrystals are typically coated with capping 

ligands and dispersible in a variety of solvents, they can be deposited using solution-based 

printing schemes.6  After deposition, the capping ligands tend to limit the electrical conductivity 

of the nanocrystal layers and must be removed, either by capping ligand exchange or stripping,7–9 

or by fusing the nanocrystals by heating.6,10–14  These processes have enabled high mobility thin 

film transistors (TFTs),5,15,16 high efficiency light-emitting diodes (LEDs),17–20 photodetectors,21 

and photovoltaic devices (PVs).3,8,12,22–24   

For PVs, a variety of different nanocrystals have been explored, including PbS,8 

CuInSe2,
25,26 Cu(In,Ga)Se2 (CIGS),11,12,14 CsPbI3,

27,28 Cu2ZnSnS4 (CZTS),29–31 CdSe,32 and 

CdTe.13,33  Ligand exchange strategies have enabled devices with power conversion efficiencies 

(PCEs) of just over 13%,8,27 and sintered nanocrystal layers processed at high temperature 

(300oC-600oC) have been used to make devices with even higher efficiency (PCE>16%).11–14  To 

ensure consistent ligand removal or sintering and limit shunting in the devices, the as-deposited 

nanocrystal films need to be uniform.11  Uniformity is difficult to achieve in a single deposition 

step for relatively thick films (>200 nm), because of the tendency to form cracks and voids as the 

solvent evaporates from the deposited ink.25,34   Spin coating has been commonly used to make 

smooth and continuous nanocrystal films, but this method is only suitable for relatively thin 

layers (<200 nm), and thicker films require multiple deposition steps.13,35–37  Thick films without 

cracks have been demonstrated using controlled solvent evaporation25 or layer-by-layer 

deposition strategies,11,35,36,38–41 but these methods are too slow to be used for commercial device 
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fabrication.42  Here, we report the use of an automated ultrasonic spray process to rapidly 

produce uniform, relatively thick (>1 m), crack-free nanocrystal films.  This method enables 

deposition of the nanocrystal layer in a single step with a high degree of thickness uniformity 

over a large substrate area, which is especially useful for applications like PVs that require large 

device areas with very few macroscopic defects.             

The materials and processing parameters necessary to deposit thick, crack-free films of 

colloidal CIGS nanocrystals with an automated spray process in a single processing step are 

detailed herein.  The spray-deposited CIGS nanocrystal films were selenized by heating above 

500oC under selenium (Se) vapor, and incorporated into PVs. Cracks in the deposited layer led to 

large inhomogeneities in the selenized film and very poor device performance.  We found that 

cracking could be prevented by ensuring that the nanocrystals had complete ligand coverage in 

the ink without a significant excess of free ligand.  Using crack-free spray-deposited films, the 

selenization process could be controlled by adjusting the temperature and duration of Se 

exposure to obtain uniformly sintered films that performed well in PVs.   

   

Experimental Details 

Materials. Elemental Se powder (99.99%, 100 mesh), copper chloride (CuCl, 99.99+%), 

and cadmium sulfate (CdSO4, 99.999%) were purchased from Aldrich Chemical Co.  Ethanol 

(absolute), toluene (99.99%) and ammonium hydroxide (NH4OH, 18 M; ACS certified) were 

purchased from Fisher Scientific.  Thiourea (CH4N2S, >99.0%) was purchased from Sigma-

Aldrich. Gallium chloride (GaCl3, 99.999%) and indium chloride (InCl3, 99.999%) were 

received from 5N Plus.  Oleylamine (C17H37N, OLA, >70%) was purchased from TCI America.  
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CIGS nanocrystal synthesis. CIGS nanocrystals were synthesized with a targeted 

composition of CuIn0.65Ga0.35Se2 using published procedures.11,25,43  Prior to use, OLA was 

degassed for 12 h at 110 °C under vacuum.  In a three-neck flask in a N2-filled glovebox, 4 mmol 

of CuCl (0.396 g), 2.6 mmol of InCl3 (0.575 g), 1.4 mmol of GaCl3 (0.247 g), and 8 mmol of Se 

(0.632 g) was combined with 30 mL of OLA. The flask was sealed with rubber septa, removed 

from the glovebox and attached to a Schlenk line.  The mixture was placed under vacuum for 30 

min at 110 °C and then blanketed with nitrogen.  The temperature was increased at 12-14 °C/min 

to 240 °C.  After 30 min, the heating mantel was removed and the reaction mixture was allowed 

to cool to room temperature.  The nanocrystals were precipitated by adding 1-5 mL of ethanol to 

each g of reaction product and then centrifuging at an rcf of 2057 x g for 2 min in a 4.5 inch 

radius centrifuge (4000 rpm). The nanocrystals were redispersed in 10 mL of toluene and 

centrifuged to remove poorly capped nanocrystals.  The supernatant was isolated and combined 

with 10 mL of ethanol and centrifuged to reprecipitate the nanocrystals.  The nanocrystals were 

finally dispersed in toluene to a concentration of 10 mg/mL. This procedure yields approximately 

200 mg of OLA-capped nanocrystals with diameters ranging between 8-20 nm, and a 

composition of Cu0.78In0.63Ga0.25Se2, as determined by energy-dispersive X-ray spectroscopy 

(EDS) on an FEI Quanta 650 FEG scanning electron microscope (SEM) with a Bruker XFlash 

EDS Detector 5010.   

PV device fabrication. PVs were fabricated on soda-lime glass with a 

glass/Mo/CIGS/CdS/ZnO/ITO stack.11,43  Soda-lime glass (Delta Technology) substrates (25 mm 

x 25 mm) were sonicated in 1:1 vol/vol acetone/isopropanol, rinsed with deionized (DI) water, 

sonicated again in DI-H2O, and dried with nitrogen.  Mo was deposited with 1 m thickness on 

by rf sputtering from a Mo target (Lesker, 99.95%) in two steps.  After depositing 400 nm of an 
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adhesive layer at 5 mTorr, the remainder of the Mo layer with higher conductivity was deposited 

at 1.5 mTorr.44  Nanocrystals were deposited using a Sono-Tek ExactaCoat ultrasonic automated 

spray system with a 120 kHz ultrasonic nozzle onto substrates heated to 100 °C using a liquid 

flow rate of 0.275 mL/min and a nozzle air pressure of 2.6 psi (17.9 kPa). The nozzle was 

positioned 11.5 cm above the substrate and raster scanned with 3 mm spacing at a speed of 14 

mm/s.  Prior to selenization, the nanocrystal films were heated for 1 h at 525 °C under Ar in a 

Thermolyne 79500 tube furnace and then soaked in 1M NaCl solution for 10 min.11,38 The 

substrates were then transferred into a nitrogen-filled glovebox and placed above a quartz boat 

filled with Se in a hollow graphite cylinder.11,43  The cylinder was sealed, removed from the 

glove box and placed in the tube furnace under Ar and heated at 80 °C/min to 500°C for 10 

min.11,43  

A CdS buffer layer (50 nm) was deposited on the selenized nanocrystal film by chemical 

bath deposition (CBD).  A 300 mL crystallization dish was filled with 160 mL DI-H2O and 

heated to 80 °C. After the temperature stabilizes, 25 mL of 15 mM CdSO4, 12.5 mL of 1.5 M 

thiourea, and 32 mL of 18 M NH4OH45 were added to the dish followed by immediate 

immersion of the substrates in the bath for 15 min. The substrates were then rinsed with DI-H2O 

and dried with nitrogen.  Finally, 50 nm of ZnO (99.9%, Lesker) and 600 nm indium tin oxide 

(ITO, 99.99%, Lesker) were sputter-deposited using an Angstrom Engineering AMOD at 2 

mTorr through shadow masks to create an active area of 10 mm2.  The ITO was patterned with 

silver paint (SPI Supplies) grid lines.  All devices were heated for 2 h at 225 °C in air at 1 atm 

prior to testing.   

Materials and Device Characterization. SEM images were obtained using a Zeiss Supra 

40 VP SEM operated at 5 kV. Nanocrystal films that had not been selenized were imaged on Si 
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wafer substrates.  Thermogravimetric analysis (TGA) was carried out using a Mettler-Toledo 

DSC/TGA with 1 mg of nanocrystals heated at 10 °C/min.  Current-voltage (IV) characteristics 

of the PVs were measured using a Keithley 2400 source meter under AM1.5G light from a 

Newport 91160 solar simulator tuned to 100 mW/cm2 using a NIST calibrated Si photodiode 

(Hamamatsu, S1787-08).  External quantum efficiency (EQE) measurements were obtained as 

previously described using a home-built instrument.11   

 

Results and Discussion 

Uniform Crack-Free Films of CIGS Nanocrystals.  Figure 1 shows top and cross-

section SEM views of a 1.3 m layer of CIGS nanocrystals that was deposited using a fully 

automatic Sono-Tek ExactaCoat system with a 3-axis robotic arm.  The film has uniform 

thickness and is free of cracks.  Much of our previous PV fabrication research has utilized a 

pressure-driven hand sprayer to deposit CIGS nanocrystals.11,43  The automated ultrasonic spray 

deposition process enables a much higher level of control and repeatability, producing a much 

more consistent droplet size  of about 13 m in diameter.46  The thickness of the deposited films 

was found to depend on the concentration of the nanocrystals in the ink, the air pressure, liquid 

flow rate, raster line spacing, raster speed, and nozzle height; the roughness and morphology on 

the delivery rate of the nanocrystals to the surface, which is controlled by the liquid flow rate, 

ink concentration, nozzle height and nanocrystal concentration in the ink; and the amount of 

cracking in the film, by the way the nanocrystals were purified prior to dispersion in the ink.     
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Figure 1. (a) Top-view and (b) cross-section SEM images of a uniform crack-free film of CIGS 

nanocrystals deposited using an ultrasonic spray process.   

 

Figure 2 outlines the purification process used to isolate the nanocrystals from the 

reaction mixture and shows SEM images of two spray-deposited films—one with significant 

cracking and one without.  Nanocrystal films with cracks had a visually matte appearance and 

those without cracks were shiny and optically reflective (Figures 2d and 2e).   Both films in 

Figure 2 were deposited using the same spray parameters with similar nanocrystal concentrations 

in the ink.  The only difference between the two films was in the way the nanocrystals were 

purified.  The nanocrystals used to make the film with cracks were isolated from the reaction 

mixture with a relatively large amount of ethanol in the first purification step.  We found that 

films exhibited significant cracking when nanocrystals were precipitated with more than 2.0 mL 

of ethanol/g of reaction product.  Antisolvent precipitation is commonly used to purify 

nanocrystals47,48 and known to strip ligands from the nanocrystal surface in many cases.49-52  

TGA of the CIGS nanocrystals showed that OLA ligand coverage was significantly affected by 

the amount of ethanol used in the purification step.  In Figure 3, the weight loss event near 

200°C corresponds to the loss of OLA from the sample and the total weight loss from the sample 

provides a measure of the amount of ligand coverage on the nanocrystals.  One thing to note 
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from the TGA data is that a relatively small difference in ligand coverage determines whether the 

spray-deposited film ends up with cracks.  For example, nanocrystals precipitated with 3.0 mL or 

1.5 mL of ethanol per g of reaction product are composed of 14 wt% or 18 wt% OLA, 

respectively. This is within the range expected for monolayer coverage of OLA on the 

nanocrystals.53      

 

 

Figure 2. (a) The purification of CIGS nanocrystals is achieved by antisolvent precipitation 

using toluene and ethanol as the solvent:antisolvent pair.  (b,c) SEM images of CIGS nanocrystal 

films with nanocrystals precipitated using (b) 3.0 mL and (c) 1.5 mL of ethanol/g reaction 

product. (d,e) Photos of the films in (b) and (c) taken (i) with and (ii) without a flash.   
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Figure 3. TGA of OLA-capped CIGS nanocrystals precipitated with 1.5 mL ethanol/g reaction 

product (i, red line), 3.0 mL anti-solvent/g reaction product (ii, brown line), and 4.5 mL anti-

solvent/g reaction product (iii, black line).  SEM images of the films made with the nanocrystals 

from trace i and trace ii are presented in Figures 2c and 2b, respectively.  Inset: TGA of pure 

OLA.   

 

Since the extent of OLA ligand coverage on the CIGS nanocrystals appeared to underlie 

the formation of cracks in the spray-deposited films, we tried to add OLA to OLA-poor 

nanocrystal inks prior to spray coating.  As an example, nanocrystals that had been purified by 

adding 3 mL of ethanol per g of reaction product (which would form cracks when spray-

deposited) were dispersed in toluene at a concentration of 10 mg/mL with additional OLA in 

amounts ranging between 0.25 vol% to 0.5 vol%, which corresponds to 1.5-3.0 eq. of OLA 

relative to the amount of OLA needed to provide monolayer coverage.  There is sufficient OLA 

to achieve full ligand coverage; however, this post-purification addition of OLA to the 

nanocrystal ink did not alleviate the cracking of the deposited films.  There is some reduction in 
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the amount of cracking, but cracks are still observed, as in Figure 4b.  In fact, the addition of 

OLA was problematic because excess OLA segregated from the nanocrystal film and created a 

residue on the surface, as in Figure 4c. Based on the observed cracking, it appears that the OLA 

added to the dispersion after the purification step is not incorporating into the capping ligand 

layer as necessary to eliminate crack formation.  OLA residue also creates a major problem 

during the fabrication of PVs.  Prior to selenization, the CIGS nanocrystal film are heated in Ar 

at 525°C for 1 hr to remove OLA from the layer, otherwise a thick carbon layer ends up forming 

that leads to poor device performance.11  When OLA was added to the ink after purification, the 

pre-selenization anneal generated a significant concentration of holes in the film. The addition of 

OLA to the nanocrystal ink after purification could not be used to produce usable, crack-free 

films. 

 

 

Figure 4. SEM images of CIGS nanocrystal films deposited with a) no added OLA, b) 0.27 

vol% added OLA, and c) 0.54 vol% added OLA.  Crack formation was reduced by the addition 

of OLA to the ink, but excess OLA was found to segregate to the nanocrystal surface.   

 

These results show that adsorbed ligand plays a direct role in preventing cracks in the 

dried nanocrystal films and that it is not possible to simply add more free ligand to the ink to 
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prevent cracking.  This is because it is the weak attractive interactions between bonded capping 

ligands that pull the nanocrystals together and maintain the integrity of the film as the solvent 

evaporates.  Cracks appear when the in-plane strain at the interface of the film created by the 

evaporation of residual solvent in the late stages of drying exceeds some limit of fracture 

toughness.  Without capping ligands on the nanocrystals, there is only weak van der Waals 

attraction between the inorganic cores holding the particle film together to resist cracking.  

Kramer et al.52 proposed that higher ligand coverage on nanocrystals can increase the toughness 

of a dried nanocrystal film and reduce the likelihood of crack formation during the drying 

process, by enhancing the interparticle attraction and strengthening the ligand-ligand interactions 

by interdigitation and tangling between ligands on neighboring nanocrystals.54  Additional free 

ligand in the dried film does not play the same role because the ligand is not attached to the core 

of the nanocrystals and does not provide a robust link needed to significantly enhance the 

interparticle attractions or influence the integrity of the nanocrystal film. 

 

Cracks Influence the Selenization of CIGS nanocrystal films.  The spray-deposited 

CIGS nanocrystal films were selenized and incorporated into PVs.  Figure 5 shows SEM images 

of spray-deposited CIGS nanocrystal films before and after selenization.  The crack-free film in 

Figures 5a, 5b, 5e and 5f has selenized uniformly, although in this particular film only the top 

layer of the nanocrystals have been sintered.  As shown in Figures 5c, 5d, 5g and 5h, selenization 

of the film with cracks led to large (>5 m) islands of sintered CIGS crystals on top of a more 

continuous sintered polycrystalline CIGS layer.  The cracks appear to provide a path for Se vapor 

to penetrate deep into the film, even under it, leading to uneven recrystallization and grain 

growth, as illustrated in Figure 6.  This leads to the observed islanding and disconnected 
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selenized film morphologies in Figures 5g and 5h.  Devices made from selenized films that had 

cracks exhibited little or no photoresponse.   

  

  

 

 

Figure 5: Spatial (a,c,e,g) and cross sectional (b,d,f,h) SEM images of films before (a-d) and 

after (e-h) selenization. The reflective film (a,b,e,f) is highly uniform after selenization, while 

matte films (c,d,g,h) become more heterogeneous.  
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Figure 6: Selenization of nanocrystal films without cracks (left) and with cracks (right). In the 

crack-free films, Se evenly interacts with the nanocrystals and grain growth occurs evenly across 

the film. In the nanocrystal films with cracks, grain growth occurs at all exposed surfaces, 

leading to very uneven grain growth.  

 

The power conversion efficiency (PCE) of PVs made from glossy, crack-free films 

depended on the selenization conditions and the initial nanocrystal film thickness.  SEM images 

of two CIGS nanocrystal films deposited without cracks with different thickness, of 0.9 µm and 

1.2 µm, are shown in Figure 7 after 10 min of exposure to Se vapor at 500°C or 550°C.  Both 

films are not fully sintered after heating at 500°C.  At the higher selenization temperature of 

550°C, both films have completely sintered.  A carbon-rich amorphous layer underlies both 

films. We have previously reported X-ray photoelectron spectroscopy (XPS) analysis of this 

layer, showing that is comprised of both Se and carbon43 and can be eliminated by annealing the 

film in Ar before selenization.11 One drawback of the crack-free films appears to be that it is 

more difficult to remove the excess carbon in the film before selenization.  This becomes a 
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problem especially when the selenization is carried out for too long and additional Se 

accumulates in this underlying carbon-rich layer.     

 

Figure 7: SEM images of Cu(In,Ga)Se2 nanocrystal films with two thicknesses of (a,c) 1.2 µm 

and (b,d) 0.9 µm after 10 min of exposure to Se vapor at two different temperatures, of (a,b) 

500°C and (c,b) 550°C. e) Average PCE of four devices fabricated from 1.2 µm (red circles) and 

0.9 µm (black squares) nanocrystal films are exposed to Se vapor at 500°C, 525°C, and 550 °C 

for 10 min.  The error bars indicate the highest and lowest PCEs of the four devices fabricated 

for each experimental condition.  

  

The average PCE values of CIGS nanocrystal film PVs that were selenized for 10 min at 

500°C, 525°C, or 550°C are shown in Figure 7e.  The efficiency of devices made with 1.2 m 

films improved with increased selenization temperature, while the opposite was true for devices 

fabricated with the thinner 0.9 m films.  This is because the thinner films become completely 

selenized at lower temperature than the thicker films.  For these thinner films, the higher 

selenization temperature leads to an accumulation of Se in the device layer, particularly in the 
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carbon-rich layer between the CIGS film and the Mo back contact, that deteriorates performance.  

This carbon-rich layer is known to be a challenge facing the fabrication of high efficiency CIGS 

PVs with nanocrystal inks.55  For the thicker films, higher selenization temperatures are required 

to fully sinter the layer.  One additional point is that the variability in performance of PVs made 

with thinner 0.9 m CIGS layers was less than for the PVs with the thicker film for all 

selenization temperatures. 

Figure 8 shows SEM images of a crack-free, 1.0 µm CIGS nanocrystal film before and 

after selenization at 550 °C for 10 min and the IV and EQE characteristics of the PV made with 

this layer.  The device exhibits a PCE of 6.6%.  The optimized parameters that were used to 

process this device were relatively reliable.  For example, we made 12 devices over a two-week 

period and of these, 11 had non-linear JV response and were classified as non-shorted. These 11 

functioning devices exhibited an average PCE=5.27%, Voc=0.41 V, Jsc=25.8 cm2, and FF=0.49. 

The fill factor was found to be the most variable device parameter.  This probably relates to the 

difficulty in achieving good device performance when the nanocrystal layer changes 

significantly during the selenization process.  For example, the nanocrystal films imaged in 

Figures 8a and 8b has shrunk from 1 m to 350 nm after selenization.  This thickness reduction 

can often lead to pinholes that reduce the fill factor and Voc, and remains one of the primary 

challenges to achieving high efficiencies in selenized Cu(In,Ga)Se2 nanocrystal films.  One way 

to avoid the volume reduction is to selenize Cu(In,Ga)S2 nanocrystals.56    
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Figure 8. SEM images (spatial SEM inset) of Cu0.78In0.63Ga0.25Se2 nanocrystal films (a) before 

and (b) after selenization (10 min, 550°C).  The insets in (a) and (b) are top-view SEM images of 

the layers.  The images in (b) were acquired deposition of the CdS buffer layer.  (c) Current-

voltage response of the PV device fabricated with the selenized layer (PCE=6.6%, Jsc=26.3 

mA/cm2, Voc=0.43 V, and FF=0.59 under AM1.5, 100 mW/cm2 conditions).  The inset in (c) 

shows the EQE response of the device. The value of Jsc calculated from the EQE data is 26.1 

mA/cm2, which is close to the measured Jsc.    

 

Conclusions 
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An automated ultrasonic spray deposition method was developed to deposit thick (>1 

m) layers of CIGS nanocrystals with uniform thickness and no cracks.  It was crucial to have 

adequate OLA ligand capping to eliminate cracking in the films.  When too much antisolvent 

was used to isolate the nanocrystals from the crude reaction product, the nanocrystal layers 

ended up having a significant amount of cracking.  This was due to the loss of capping ligands 

during the purification process.  It was not possible to simply add more OLA to the nanocrystal 

dispersion prior to the deposition to prevent cracks.  Only OLA adsorbed on the nanocrystals 

helped to prevent cracks.  The crack-free films enabled optimization of the selenization process 

to achieve reliable fabrication of devices with reasonably high efficiency.  This work shows how 

subtle changes in nanocrystal purification and ink formulation can lead to significant differences 

in film morphology and properties, especially when relatively thick layers of nanocrystals are 

needed on large areas of substrate, as in the case especially of PVs.   
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