1,299 research outputs found
The Effect of Mutators on Adaptability in Time-Varying Fitness Landscapes
This Letter studies the quasispecies dynamics of a population capable of
genetic repair evolving on a time-dependent fitness landscape. We develop a
model that considers an asexual population of single-stranded, conservatively
replicating genomes, whose only source of genetic variation is due to copying
errors during replication. We consider a time-dependent, single-fitness-peak
landscape where the master sequence changes by a single point mutation every
time . We are able to analytically solve for the evolutionary dynamics
of the population in the point-mutation limit. In particular, our model
provides an analytical expression for the fraction of mutators in the dynamic
fitness landscape that agrees well with results from stochastic simulations.Comment: 4 pages, 3 figure
Host-Parasite Co-evolution and Optimal Mutation Rates for Semi-conservative Quasispecies
In this paper, we extend a model of host-parasite co-evolution to incorporate
the semi-conservative nature of DNA replication for both the host and the
parasite. We find that the optimal mutation rate for the semi-conservative and
conservative hosts converge for realistic genome lengths, thus maintaining the
admirable agreement between theory and experiment found previously for the
conservative model and justifying the conservative approximation in some cases.
We demonstrate that, while the optimal mutation rate for a conservative and
semi-conservative parasite interacting with a given immune system is similar to
that of a conservative parasite, the properties away from this optimum differ
significantly. We suspect that this difference, coupled with the requirement
that a parasite optimize survival in a range of viable hosts, may help explain
why semi-conservative viruses are known to have significantly lower mutation
rates than their conservative counterparts
Solution of the Quasispecies Model for an Arbitrary Gene Network
In this paper, we study the equilibrium behavior of Eigen's quasispecies
equations for an arbitrary gene network. We consider a genome consisting of genes, so that each gene sequence may be written as . We assume a single fitness peak (SFP) model
for each gene, so that gene has some ``master'' sequence for which it is functioning. The fitness landscape is then determined by
which genes in the genome are functioning, and which are not. The equilibrium
behavior of this model may be solved in the limit of infinite sequence length.
The central result is that, instead of a single error catastrophe, the model
exhibits a series of localization to delocalization transitions, which we term
an ``error cascade.'' As the mutation rate is increased, the selective
advantage for maintaining functional copies of certain genes in the network
disappears, and the population distribution delocalizes over the corresponding
sequence spaces. The network goes through a series of such transitions, as more
and more genes become inactivated, until eventually delocalization occurs over
the entire genome space, resulting in a final error catastrophe. This model
provides a criterion for determining the conditions under which certain genes
in a genome will lose functionality due to genetic drift. It also provides
insight into the response of gene networks to mutagens. In particular, it
suggests an approach for determining the relative importance of various genes
to the fitness of an organism, in a more accurate manner than the standard
``deletion set'' method. The results in this paper also have implications for
mutational robustness and what C.O. Wilke termed ``survival of the flattest.''Comment: 29 pages, 5 figures, to be submitted to Physical Review
A Selective Advantage for Conservative Viruses
In this letter we study the full semi-conservative treatment of a model for
the co-evolution of a virus and an adaptive immune system. Regions of viability
are calculated for both conservatively and semi-conservatively replicating
viruses interacting with a realistic semi-conservatively replicating immune
system. The conservative virus is found to have a selective advantage in the
form of an ability to survive in regions with a wider range of mutation rates
than its semi-conservative counterpart. This may help explain the existence of
a rich range of viruses with conservatively replicating genomes, a trait which
is found nowhere else in nature.Comment: 4 pages, 2 figure
Design and Implementation of an Open Source Indexing Solution for a Large Set of Radiological Reports and Images
This paper hopes to share the insights we experienced during designing, building, and running an indexing solution for a large set of radiological reports and images in a production environment for more than 3 years. Several technical challenges were encountered and solved in the course of this project. One hundred four million words in 1.8 million radiological reports from 1989 to the present were indexed and became instantaneously searchable in a user-friendly fashion; the median query duration is only 31 ms. Currently, our highly tuned index holds 332,088 unique words in four languages. The indexing system is feature-rich and language-independent and allows for making complex queries. For research and training purposes it certainly is a valuable and convenient addition to our radiology informatics toolbox. Extended use of open-source technology dramatically reduced both implementation time and cost. All software we developed related to the indexing project has been made available to the open-source community covered by an unrestricted Berkeley Software Distribution-style license
The INTERNODES method for applications in contact mechanics and dedicated preconditioning techniques
The mortar finite element method is a well-established method for the numerical solution of partial differential equations on domains displaying non-conforming interfaces. The method is known for its application in computational contact mechanics. However, its implementation remains challenging as it relies on geometrical projections and unconventional quadrature rules. The INTERNODES (INTERpolation for NOn-conforming DEcompositionS) method, instead, could overcome the implementation difficulties thanks to flexible interpolation techniques. Moreover, it was shown to be at least as accurate as the mortar method making it a very promising alternative for solving problems in contact mechanics. Unfortunately, in such situations the method requires solving a sequence of ill-conditioned linear systems. In this paper, preconditioning techniques are designed and implemented for the efficient solution of those linear systems
A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data
Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data
Modeling the interactions of biomatter and biofluid
The internal motions of biomatter immersed in biofluid are investigated. The
interactions between the fragments of biomatter and its surrounding biofluid
are modeled using field theory. In the model, the biomatter is coupled to the
gauge field representing the biofluid. It is shown that at non-relativistic
limit various equation of motions, from the well-known Sine-Gordon equation to
the simultaneous nonlinear equations, can be reproduced within a single
framework.Comment: 10 pages, 3 figure
Development of phenylthiourea derivatives as allosteric inhibitors of pyoverdine maturation enzyme PvdP tyrosinase
Infections caused by Pseudomonas aeruginosa become increasingly difficult to treat because these bacteria have acquired various mechanisms for antibiotic resistance, which creates the need for mechanistically novel antibiotics. Such antibiotics might be developed by targeting enzymes involved in the iron uptake mechanism because iron is essential for bacterial survival. For P. aeruginosa, pyoverdine has been described as an important virulence factor that plays a key role in iron uptake. Therefore, inhibition of enzymes involved in the pyoverdine synthesis, such as PvdP tyrosinase, can open a new window for the treatment of P. aeruginosa infections. Previously, we reported phenylthiourea as the first allosteric inhibitor of PvdP tyrosinase with high micromolar potency. In this report, we explored structure-activity relationships (SAR) for PvdP tyrosinase inhibition by phenylthiourea derivatives. This enables identification of a phenylthiourea derivative (3c) with a potency in the submicromolar range (IC50 = 0.57 + 0.05 µM). Binding could be rationalized by molecular docking simulation and 3c was proved to inhibit the bacterial pyoverdine production and bacterial growth in P. aeruginosa PA01 cultures
- …