177 research outputs found
Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein
Accurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes. Most meiotic recombination intermediates that give rise to interhomolog crossovers are embedded within a hallmark chromosomal structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known structural components of the budding yeast SC, the Zip1 protein is unique for its independent role in promoting crossover recombination; Zip1 is specifically required for the large subset of crossovers that also rely on the meiosis-specific MutSgamma complex. Here we report that adjacent regions within Zip1\u27s N terminus encompass its crossover and synapsis functions. We previously showed that deletion of Zip1 residues 21-163 abolishes tripartite SC assembly and prevents robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSgamma crossover recombination. We find the reciprocal phenotype when Zip1 residues 2-9 or 10-14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSgamma crossovers are strongly diminished. Interestingly, Zip1 residues 2-9 or 2-14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSgamma crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15-20 does not detectably prevent Zip3\u27s localization at Zip1 polycomplex and supports some MutSgamma crossing over but prevents normal SC assembly and Ecm11 SUMOylation. Our results highlight distinct N terminal regions that are differentially critical for Zip1\u27s roles in crossing over and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors within close proximity of one another
Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery
Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery
Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control
Trf4 is the poly(A) polymerase component of TRAMP4, which stimulates nuclear RNA degradation by the exosome. We report that in Saccharomyces cerevisiae strains lacking Trf4, cryptic transcripts are detected from regions of repressed chromatin at telomeres and the rDNA intergenic spacer region (IGS1-R), and at CEN3. Degradation of the IGS1-R transcript was reduced in strains lacking TRAMP components, the core exosome protein Mtr3 or the nuclear-specific exosome component Rrp6. IGS1-R has potential binding sites for the RNA-binding proteins Nrd1/Nab3, and was stabilized by mutation of Nrd1. IGS1-R passes through the replication fork barrier, a region required for rDNA copy number control. Strains lacking Trf4 showed sporadic changes in rDNA copy number, whereas loss of both Trf4 and either the histone deacetylase Sir2 or the topoisomerase Top1 caused dramatic loss of rDNA repeats. Chromatin immunoprecipitation analyses showed that Trf4 is co-transcriptionally recruited to IGS1-R, consistent with a direct role in rDNA stability. Co-transcriptional RNA binding by Trf4 may link RNA and DNA metabolism and direct immediate IGS1-R degradation by the exosome following transcription termination
Extensive DNA End Processing by Exo1 and Sgs1 Inhibits Break-Induced Replication
Homology-dependent repair of DNA double-strand breaks (DSBs) by gene conversion involves short tracts of DNA synthesis and limited loss of heterozygosity (LOH). For DSBs that present only one end, repair occurs by invasion into a homologous sequence followed by replication to the end of the chromosome resulting in extensive LOH, a process called break-induced replication (BIR). We developed a BIR assay in Saccharomyces cerevisiae consisting of a plasmid with a telomere seeding sequence separated from sequence homologous to chromosome III by an I-SceI endonuclease recognition site. Following cleavage of the plasmid by I-SceI in vivo, de novo telomere synthesis occurs at one end of the vector, and the other end invades at the homologous sequence on chromosome III and initiates replication to the end of the chromosome to generate a stable chromosome fragment (CF). BIR was infrequent in wild-type cells due to degradation of the linearized vector. However, in the exo1Δ sgs1Δ mutant, which is defective in the 5′-3′ resection of DSBs, the frequency of BIR was increased by 39-fold. Extension of the invading end of the plasmid was detected by physical analysis two hours after induction of the I-SceI endonuclease in the wild-type exo1Δ, sgs1Δ, and exo1Δ sgs1Δ mutants, but fully repaired products were only visible in the exo1Δ sgs1Δ mutant. The inhibitory effect of resection was less in a plasmid-chromosome gene conversion assay, compared to BIR, and products were detected by physical assay in the wild-type strain. The rare chromosome rearrangements due to BIR template switching at repeated sequences were increased in the exo1Δ sgs1Δ mutant, suggesting that reduced resection can decrease the fidelity of homologous recombination
A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements
Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur
Centromere-Proximal Crossovers Are Associated With Precocious Separation of Sister Chromatids During Meiosis in Saccharomyces cerevisiae
In most organisms, meiotic chromosome segregation is dependent on crossovers (COs), which enable pairs of homologous chromosomes to segregate to opposite poles at meiosis I. In mammals, the majority of meiotic chromosome segregation errors result from a lack of COs between homologs. Observations in Homo sapiens and Drosophila melanogaster have revealed a second class of exceptional events in which a CO occurred near the centromere of the missegregated chromosome. We show that in wild-type strains of Saccharomyces cerevisiae, most spore inviability is due to precocious separation of sister chromatids (PSSC) and that PSSC is often associated with centromere-proximal crossing over. COs, as opposed to nonreciprocal recombination events (NCOs), are preferentially associated with missegregation. Strains mutant for the RecQ homolog, SGS1, display reduced spore viability and increased crossing over. Much of the spore inviability in sgs1 results from PSSC, and these events are often associated with centromere-proximal COs, just as in wild type. When crossing over in sgs1 is reduced by the introduction of a nonnull allele of SPO11, spore viability is improved, suggesting that the increased PSSC is due to increased crossing over. We present a model for PSSC in which a centromere-proximal CO promotes local loss of sister-chromatid cohesion
- …